

Air Quality Test Report

EPA Compliance Test for Particulate Matter and Lead Emissions

#7 Blast Furnace Bldg.

#8 Refinery Process Kettles

#9 Refinery Bldg.

A717 tkrevkneum no Doasslas 3 ORC 12300

Doe Run Company 881 Main Street Herculaneum, Missouri 40170861
SUPERFUND RECORDS

Test Date(s): December 3-5, 2002

MEMPHIS, TENNESSEE - HOUSTON, TEXAS

Herculaneum Smelting Division ISO 9002 Certified

Aaron Miller Environmental Manager amiller@doerun.com

April 9, 2003

Mr. Bruce Morrison USEPA Region VII 901 North 5th Kansas City, KS 66101

Re: Herculaneum Stack Testing

Dear Bruce:

Enclosed you will find our test report of the stack testing conducted in late January. An earlier attempt had been made in December, but due to sampling equipment problems (ice like formations in the sample probe, umbilical cord, and the impinger train) the stack sampling was canceled. The next available date(s) that were mutually agreeable to the agencies and a different stack sampling company (Aeromet) was in late January 2003.

The sample data from the laboratory was not received at Aeromet's offices until late February. During the interim, the Missouri Department of Natural Resources Air Pollution Control Program (MDNR-APCP) requested additional information be added to the sampling report we did for them in 2002. In an effort to produce a report that was more acceptable to MDNR-APCP, the agency that actually oversaw the stack testing in January, it was thought better to understand the information that the MDNR-APCP wanted to see reflected in the stack sampling report rather than produce another report that was lacking in some information that the MDNR-APCP.

We believe that the enclosed report now contains that information to their satisfaction. Should you have any questions concerning the report, please feel free to contact me at your earliest convenience at 636-933-3180.

Sincerely,

Aaron W. Miller

Environmental Manager

Caron W. Mille

Primary Smelting

AWMISID

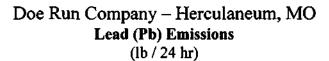
CC:

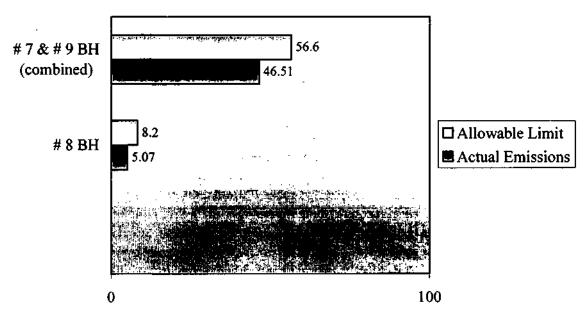
Clifton Gray, The Doe Run Company Doug Elley, MDNR-APCP

> 881 Main Street, Herculaneum, MO 63048 Telephone: 636-933-3180

Felephone: 636-933-3186 Fax: 636-933-3150 RECEIVED

APR 10 2003


SUPERFUND DIVISION


Table of Contents

	<u>Page</u>
Executive Summary	1
Introduction	2
Summary of Results	4
#7 Blast Furnace Bldg. BH	
# 8 Refinery Process Kettles BH	
# 9 Refinery Bldg. BH	
Test Procedures & Specifications	7
Calculations	. 11
#7 Blast Furnace Bldg. BH	11
# 8 Refinery Process Kettles BH	
# 9 Refinery Bldg. BH	
<u>Appendices</u>	
Appendix A - Diagrams	
Source Dimensions / Traverse Point Diagr	am
Sample Train Schematic(s)	
Appendix B - Analysis Results (PM/Pb)	
. Pb Analysis Reports	
PM Analysis Reports	
Chain of Custody Records	
Appendix C - Field Data Records	
Appendix D - Equipment Calibrations	
Appendix E - Certifications	
Appendix G Process Date	
Appendix G - Process Data	

Executive Summary

White Star Environmental conducted air quality testing at Doe Run Company, a primary lead smelting plant, located in Herculaneum, Missouri. Three process systems: (1) # 7 Blast Furnace Bldg. baghouse, (2) # 8 Refinery Process Kettles baghouse, and (3) the # 9 Refinery Bldg. baghouse were sampled for particulate matter and lead emissions. The testing was performed during the period December 3-5, 2002 and serves as demonstration of compliance for emissions regulated by EPA and the State of Missouri.

Based on these test results the individual processes designated as the # 8 Refinery Process Kettles, # 9 Refinery Bldg. Baghouse, and the # 7 Blast Furnace Bldg. Baghouse are operating within the specified limits for lead emissions.

Introduction

Doe Run Company, located in Herculaneum, Missouri is operating a primary lead smelting facility, which produces lead from lead sulfide ore concentrates through pyrometallurgical techniques. The Missouri Department of Natural Resources regulates this facility in the quality of air it exhausts to the atmosphere. MDNR Division 10 – Air Conservation Commission establishes the regulatory limitations through CSR 10-6.120.

The sintering process is accomplished utilizing a sintering furnace. The lead sulfide ore concentrate charge is heated in the presence of air to eliminate sulfur contained in the charge. The feed material consists of lead concentrate, iron ore, silica sand, limestone, and coke breeze. Metal conveyor belts route the feedstock through the sinter machine where the material ultimately agglomerates into a hard porous mass called sinter.

The *Blast Furnace* is a reduction process to which sinter is charged and forms separate layers of molten slag and lead bullion. The Blast Furnace is charged with feed materials consisting of sinter material and refinery drosses. Lead bullion is tapped continuously into a pot where it is then transferred by crane to the dross kettles. Ventilation hoods located over the pot control emissions from the tapping operations. The slag is tapped into a slag generator where it is palletized by water injection. After de-watering the slag with high lead content is conveyed back to the sintering machine.

As part of the requirements for ensuring air quality compliance, three processes involved in the control of emissions from the production of lead bullion at the facility were sampled for pollutant emissions, (1) # 8 Refinery Process Kettles baghouse, (2) # 9 Refinery Bldg. baghouse, and (3) the # 7 Blast Furnace Bldg. baghouse. The limitations on air pollutants from the facility are provided below.

The #7 baghouse ventilates the combined Blats Furnace and Dross Plant building fugitives. Two blast furnaces are present at the facility. The furnaces are water-jacketed to within 5 feet of the charge floor, and above that, they are lined with refractory. Both are equipped with center line off takes for their process gas streams to a separate #5 baghouse and Main Stack. Emissions from the # 7 Blast Furnace Bldg. Baghouse are controlled using eight Wheelabrator dust collectors in a 8x1 arrangement. This control device is designed to manage 300,000 acfm at full load.

The # 8 baghouse filters air from the kettle hoods in the Refinery and the CV-10 Belt under the Stock Sinter Storage Hoppers. The Refinery is basically a batch process where kettles are worked in batches of roughly 250 tons per batch before moving to another kettle. The emissions related to the # 8 Refinery Process Kettles are controlled using a Wheelabrator Dust Collector arranged in a 5x1 configuration. This control device is designed to manage 90,000 acfm at full load.

The #9 baghouse ventilates the Refinery building fugitives. Lead is pumped and laundered into the Refining department, which is equipped with eleven 250-ton kettles. Each kettle is heated by one gas-fired burner, which is on a separate ventilation system. Lead is pumped through the sequential kettle series, culminating in delivery of refined lead to casting machines. The emissions related to the #9 baghouse are controlled using a Wheelabrator Dust Collector arranged in a 5x1 configuration. This control device is designed to manage 250,000 acfm at full load.

Pollutant emissions from the facility are regulated by the Missouri Department of Natural Resources. The SIP requires lead testing and analysis however the particulate matter testing data were obtained for informational purposes and the results are included herein. Mr. Peter Yronwode, represented the Missouri Department of Natural Resources. The following table provides the applicable limits for each targeted process.

Allowable Limits Summary

Process	Lead (Pb) lbs/24 hours
#8 Baghouse	82.
#7 & #9 Baghouse (combined)	56.6

White Star Environmental performed the emissions test on the process exhaust stream(s) on December 3-5, 2002. Mr. Scott Postma with the Environmental Protection Agency witnessed the testing.

Test Results Summary

#7 Blast Furnace Bldg. Baghouse

Particulate & Lead Emissions Summary

December 3, 2002

	Par	ticulate Mat	ter (PM)	M) Lead (Pb)		
Test	Conc. Gr/dscf	Emission lb/hr	Emission lbs per 24 hr	Conc. Gr/dscf	Emission Lb/hr	Emission lbs per 24 hr
1	0.0020	7.4XO	\$100.853.1T	O.OOO	0.196	4.71
2	0.0043	01.09	265,00 t	0.00026	0.680	26.32
3	0.0034	AM2	216.49	0.0024	0.619"	24836
Avg.	0.0035	D.[\$	219:68	CECOOLS	0.500	61.93
Limit		<u></u>		ت .		<u> </u>

Exhaust Gas Summary

Parameter	Run 1	Run 2	Run 3	Average
Start Time	10:30	19294	14:46	
End Time	11:38	03830	15:54	U
Sample time, min.	60	30	60	60
Gas volume sampled, dscf	44.665	45,093	45.694	45.15
Barometric pressure, in. Hg	1 298 CH	20.8	29.8	29.8
Static pressure, in. H ₂ O	10.05	<u>iCA</u>	-10.0	=((),()
Stack pressure, in. Hg	29.06	29.03	29.06	29.06
Gas moisture, %	K 41:04	<u> </u>	0.92	1.00
Oxygen, %	200	200.9	20.9.	20.9
Carbon dioxide, %	0.0	9.0	6000	\mathfrak{M}
Nitrogen, %	<u> </u>	$\mathcal{H}_{k}\mathbb{I}$	79.0	$\langle \langle Q \rangle_0 \}$
Gas dry mol. wt., lb/lb-mole	243.0%	2011	28.84	28.60
Actual gas mol. wt., lb/lb-mole	20.70	93,70	**************************************	743.73
Gas temperature, °F	(1 K)(1 /	(3)	33.72	②
Gas velocity, ft/sec.	-4. SIL 70	51,000	£ 452450***	\$PAK)
Gas vol. flow, dscf/hr	18,095,596	18,105,769	18,367,994	3 3,132,763
Isokinetic Variation, %	9619	97,06	96.95	96 <u>.73</u>

Test Results Summary

#8 Refinery Process Kettles

Particulate Matter & Lead Emissions

December 5, 2002

	Particulate Matter (PM) Lead (Pb)				b)	
Test	Conc. Gr/dscf	Emission lb/hr	Emission lbs/per 24 hr	Conc. Gr/dscf	Emission lb/hr	Emission lbs per 24 hr
1	*0:00245	11/17243	41.38	0.000000	0.33	7,833
2	0.00378	2.643	63:44	0.00030	0.21	2012
3	F0.00223	1.333	13798 F	amors	0.10	2.29
Avg.	0.00282	1.933	47/60	OFTOTO TO	0.21	5.07
Limit	- The state of the	0		ß	-	8,2

Exhaust Gas Summary

Parameter	Run 1	Run 2	Run 3	Average
Start Time	10:15	11:50	13:50	0
End Time	11:17	12:51	14:51	
Sample time, min.	60	60	60	60
Gas volume sampled, dscf	39.612	39.391	39.994	39,83
Barometric pressure, in. Hg	30.1	30.1	30.1	30 . 1
Static pressure, in. H ₂ O	。0.2021是	0.24	0.22	0.22
Stack pressure, in. Hg	1.3011	30.22	30.12	30.12
Gas moisture, %	1.0047	0,39	0.474	(LS1)
Oxygen, %	§ 20.9	MO)	之。20.9 年	2 0. 9
Carbon dioxide, %	E 0.0	(0), (1)	200.41	HO
Nitrogen, %	79.1	702.6	(美物)(黄芩	29) ₆ 1.
Gas dry mol. wt., lb/lb-mole	28.04	M. 24.55.	20.0%	28.89
Actual gas mol. wt., lb/lb-mole	23.78	20.71	20.70	28.73
Gas temperature, °F	53	<i>න්/</i>	30.50	\$K)
Gas velocity, ft/sec.	23,33	200	20.43	23,39
Gas vol. flow, dscf/hr	41,9277,073	4,3300,4465	4,000,505	6,9946,034
Isokinetic Variation, %	992,555	:05 <u>.20</u>	第 99988343	1000.12

Test Results Summary

#9 Refinery Bldg. Baghouse

Particulate Matter & Lead Emissions

December 4, 2002

	Par	ticulate Ma	tter (PM)	Lead (Pb)		
Test	Conc.	Emission Bb/hr	Emission lb/hr per day	Conc. gr/dscf	Emission lb/hr	Emission lb/hr per day
1	0.0024	SLD9	122.05	0.00049	3.124	74.97
2	0.0029	5 <u>.</u> 9X	142.67	QQQQ343	0.702	16,75
3	0.0020	4.20	100.72	0.00024	0.493	11.04)
Avg.	0.0024	5.03	121.81	OLUMB	1.44	34.55
Limit		C)		Ţ	-	56£

Exhaust Gas Summary

Parameter	Run 1	Run 2	Run 3	Average
	*2 5.30 diff of the same (1994 - 1985)			Average
Start Time	9:48	12:37	14:56	<u> </u>
End Time	10:56	BAS	16:04	0
Sample time, min.	60	60	60	I
Gas volume sampled, dscf	44.497	44.220	43.570	(A30
Barometric pressure, in. Hg	30.2	302	30.2	30.2
Static pressure, in. H ₂ O	-10.0	-10.O	-10:0	-10.0
Stack pressure, in. Hg	29.46	29.66	29.46	2946
Gas moisture, %	0.78	0,53	0.75i	C.74 <u>] </u>
Oxygen, %	20.9	20.9	32099	20. D
Carbon dioxide, %	14 000 15	9.9	0.07	(Lat)
Nitrogen, %	79.1	70 ₀₄	2.7091	79.1
Gas dry mol. wt., lb/lb-mole	2884	2434EV3	28.84	20.00
Actual gas mol. wt., lb/lb-mole	2356	23. 7\$	28.75	%3.7S
Gas temperature, °R	33	-3X6	333	33%
Gas velocity, ft/sec.	50.10	400,56	49.66	4906/14
Gas vol. flow, dscf/hr	14,693,663	ALSM,926	14.531,330	(14,622 , 139)
Isokinetic Variation, %	9641 🛊	97. 79	95 10 市場	935.4K)

Test Procedures & Specifications

Determination of Lead Emissions From Stationary Sources EPA REFERENCE METHOD 12 (40 CFR 60, App A)

Forward

The following summary provides discussion of the testing procedures specific to this project. All equipment and methodology adhered to Method 12 requirements unless specified herein. Any deviations from these specifications are noted in bold print. The detailed sampling and analysis procedure is provided in 40 CFR 60, Appendix A.

General

Particulate and gaseous Pb emissions were sampled isokinetically (sample rate equals gas stream linear velocity) from the source and collected on a filter and in dilute nitric acid. The collected samples are digested in acid solution and are analyzed by atomic absorption spectrophotometry using an air/acetylene flame.

Equipment Specifications

A schematic of the sampling train used in performing this method is shown later in this section.

<u>Probe Nozzle</u> – Glass nozzles with a sharp, tapered leading edge were utilized. The angle of taper was 30 degrees and the taper is on the outside to preserve a constant internal diameter. The nozzles were button-hook design.

<u>Probe Liner</u> -Teflon was employed versus using a glass liner. No bias is expected to result from this modification.

<u>Pitot Tube (Type S)</u> - The pitot tube is attached to the probe to allow constant monitoring of the stack gas velocity. The impact (high pressure) opening plane of the pitot tube is even with or above the nozzle entry plane during sampling. The Type S pitot tube assembly was calibrated and assigned a coefficient of 0.84 according to Method 2.

<u>Differential Pressure Gauge</u> – A dual inclined manometer was employed for (1) velocity head (Δp) readings and (2) orifice differential (ΔH) pressure readings. The horizontal scale is 0 - 1 in. H₂O and the vertical scale provided readings in the 1 - 10 in. H₂O range.

<u>Filter Holder & Heating System</u> – A stainless steel in-stack filter device was employed during the procedures. This alteration from the standard practice of using an external heated filter assembly was due to vertical sampling traverses in conjunction with using extensive probe length, which was necessary for the traverse distances. The holder design provides a positive seal against leakage from the outside or around the filter. The holder is attached immediately at the inlet to the probe and is maintained at the stack temperature during sampling.

<u>Metering System</u> - An Apex Instruments Metering Console MC-522 includes a vacuum gauge, pump, dry gas meter (DGM) and related equipment.

<u>Barometer</u> - The barometric pressure reading(s) were obtained from the National Weather Service station located in nearby Farmington, Missouri.

<u>Condensing System</u> - Four impingers connected in series were placed in an ice bath and were utilized to condense moisture vapor and collect pollutant material from the gas stream. The sample train schematic provides a description of these devices.

Reagents and Standards

<u>Filter</u>. Advantec MFS, Inc. thimble filters, 19x90 mm, Grade 86R. A blank filter was submitted to the laboratory for lead analysis with the collected samples.

Water. Deionized distilled, conforms to ASTM D 1193-77 or 91, Type 3.

Acetone. Reagent grade, < 0.001 percent residue, in glass bottles.

Nitric Acid (0.1 N HNO₃), Reagent grade.

Sample Collection

<u>Sampling Train Preparation</u>. The impingers were prepared with 0.1 N HNO₃ in accordance with Method 12 requirements. As the gas stream bubbles through the HNO₃ solution the lead is extracted from the gas stream.

<u>Leak-Check Procedures</u> The sampling train was leak-checked prior to each test run, during changes from ports, and at the conclusion of each test run. The nozzle was plugged and a vacuum higher than encountered during the test was pulled on the system. If the leakage rate is found to be less than 0.020 cfm or 4 percent of the average sampling rate (whichever is less), the results are acceptable and no correction need be applied to the volume of gas metered.

Cyclonic Flow Test The absence of cyclonic flow test was performed on each emission source. The rotation angle was measured at each traverse point and the average value calculated. The sampling location is determined to be free of cyclonic flow if the average rotation angle is less than 20 %. All test values for the sampling locations met this value. The cyclonic flow test data sheets are provided in the appendix section of this report.

Sampling Train Operation The nozzle was placed at each traverse point as identified in the enclosed Source Diagram and the pump rate was set to perform isokinetic sampling. The clock time, sample vacuum, stack gas temperature, DGM volume & temperatures, impinger exit temperature, velocity head (Δp), orifice differential pressure (ΔH) were recorded at each traverse point. During periods of changing ports, the metering system was stopped, leak-checked, and managed in such a manner as to prevent contaminants into the system. The isokinetic percentage of each sampling period was determined to be within the +10% limit.

Sample Recovery Doe Run Company provided laboratory facilities for sample recovery activities. The thimble filter was removed from the holder and sealed in a labeled plastic bag. The impinger contents were measured for volume (ml) gain using a graduated cylinder and then transferred to a 250 ml Qorpak sample bottle labeled "Imp Catch". All system components from the nozzle through the impinger system was rinsed according to Method 12 and collected in a separate 250 ml Qorpak sample bottle labeled "Imp Wash". The silica gel was weighed on-site using a triple beam balance.

Calibration

Equipment calibration records are provided in the Appendix section of this report.

<u>Probe Nozzle</u>. Probe nozzles shall be calibrated before their initial use in the field. Using a micrometer, measure the ID of the nozzle to the nearest 0.025 mm (0.001 in.). Make three separate measurements using different diameters each time, and obtain the average of the measurements. The difference between the high and low numbers shall not exceed 0.1 mm (0.004 in.). When nozzles become nicked, dented, or corroded, they shall be reshaped, sharpened, and recalibrated before use. Each nozzle shall be permanently and uniquely identified.

<u>Pitot Tube Assembly</u>. The Type S pitot tube assembly shall be calibrated according to the procedure outlined in Method 2.

Metering System. The metering system is calibrated before and after each test project using a wet test meter accurate to within 1 percent. The wet test meter has a capacity of 30 liters/rev (1 ft^3 /rev). This calibration is performed at each of five orifice manometer settings. The DGM calibration factor, Y, and the orifice calibration factor, $\Delta H_{@}$, are determined and utilized in the emission calculations.

Analytical Procedures

Sample analysis is performed using an atomic absorption spectrophotometer (AAS), which determines the absorbance for each sample. Each sample is analyzed in triplicate and the average value reported. Appropriate dilutions are made, as needed, to bring all sample Pb concentrations into the linear absorbance range of the spectrophotometer. For each source sample, the average absorbance for the contribution of the filter blank and the 0.1 N HNO_3 blank is corrected. Use the calibration curve and this corrected absorbance to determine the Pb concentration in the sample aspirated into the spectrophotometer. Calculate the total Pb content m_t (in μg) in the original source sample; correct for all the dilutions that were made to bring the Pb concentration of the sample into the linear range of the spectrophotometer. The analysis protocol and chain of custody form submitted with the samples is provided in the Appendix Section of this report.

Method Performance

<u>Precision.</u> The within-laboratory precision, as measured by the coefficient of variation, ranges from 0.2 to 9.5 percent relative to a run-mean concentration. These values were based on tests conducted at a gray iron foundry, a lead storage battery manufacturing plant, a secondary lead smelter, and a lead recovery furnace of an alkyl lead manufacturing plant. The concentrations encountered during these tests ranged from 0.61 to 123.3 mg Pb/m³.

Analytical Range. For a minimum analytical accuracy of ± 10 percent, the lower limit of the range is 100 µg. The upper limit can be extended considerably by dilution.

Analytical Sensitivity. Typical sensitivities for a 1-percent change in absorption (0.0044 absorbance units) are 0.2 and 0.5 µg Pb/ml for the 217.0 and 283.3 nm lines, respectively.

Alternative Procedures (EPA Method 12)

Simultaneous Determination of Particulate and Lead Emissions. Method 5 may be used to simultaneously determine Pb provided: (1) acetone is used to remove particulate from the probe and inside of the filter holder as specified by Method 5, (2) 0.1 N HNO₃ is used in the impingers, (3) a glass fiber filter with a low Pb background is used, and (4) the entire train contents, including the impingers, are treated and analyzed for Pb as described in this method.

Calculations

The following section provides a detailed description of all calculations used in the determination of emission rates. Also listed are all of the intermediate values associated with these calculations.

#7 Blast Furnace Bldg. Baghouse

Dry Gas Meter Volume

$$V_{m(std)} = Vm \left[\frac{T_{STD}}{T_m} \right] \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{P_{std}} \right] = 17.64 [Y] [V_m] \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_m} \right]$$

Parameter	Run 1	Run 2	Run 3
Vm	42.506	42.88	43.356
Tm	503	. 502	501
Pbar	29.06	29.06	29.06
ΔH avg	1.85	1.86	1.92
C Factor (Y)	1.036	1.036	1.036
Vm std	44.665	45.093	45.694

Nomenclature

 ΔH = Average pressure drop across orifice, in. H_2O .

P_{bar} = Barometric pressure, in. Hg.

T_m = Absolute gas meter temperature, °R

V_m = Dry gas volume measured, ft³

Y = Dry gas meter calibration factor

 $V_{m(std)}$ = Dry gas volume corrected to dry, standard conditions, ft^3

Water Vapor Condensed

$$V_{wcad} = \left[\frac{P_w \bullet R \bullet T_{std}}{M_w \bullet P_{std}}\right] [V_f - V_i] = 0.04707 [V_f - V_i]$$

$$V_{wsgad} = \left[\frac{R \bullet T_{std}}{M_w \bullet P_{std}}\right] [W_f - W_i] = 0.04715 [W_f - W_i]$$

Moisture Content

$$B_{ws} = \left[\frac{V_{wcad} + V_{wsgad}}{V_{wcad} + V_{wsgad} + V_{mad}}\right] \bullet 100$$

Parameter	Run 1	Run 2	Run 3
V_{wc}	0.282	0.188	0.235
Vwig	0.189	0.283	0.189
Bws, %	1.04	1.03	0.92

Nomenclature:

B_{ws} = Water vapor, by volume, in gas stream, %

 ΔH = Average pressure drop across orifice, in. H_2O .

P_{bar} = Barometric pressure, in. Hg.

T_m = Absolute gas meter temperature, *R

V_f, V_i = Impinger system volume, final & initial, ml

V_m = Dry gas volume measured, ft³

 $V_{nx(std)}$ = Dry gas volume corrected to dry, standard conditions, ft^3 $V_{wc(std)}$ = Water vapor condensed, ml

 $V_{wsg(std)}$ = Water vapor captured in silica gel, g W_{t} , W_{i} = Silica gel weight, final & initial, g

Y = Dry gas meter calibration factor

0.04707 = Conversion factor, ft³/ml

 $0.04715 = \text{Conversion factor, ft}^3/\text{g}$

Dry Molecular Weight

$$M_d = 0.44[\%CO_2] + 0.32[\%O_2] + 0.28[\%CO+\%N_2]$$

Molecular Weight of Gas Stream

$$M_s = M_d \bullet \left[\frac{1 - Bws}{100} \right] + 18 \bullet \left[\frac{Bws}{100} \right]$$

Parameter	Run 1	Run 2	Run 3
O2, %	20.9	20.9	20.9
CO2, %	0.0	0.0	0.0
CO + N2, %	79.1	79.1	79.1
Bws, %	1.04	1.03	0.92
Md, lb/lb-mole	28.84	28.84	28.84
Ms, lb/lb-mole	28.72	28.72	28.74

Nomenclature

B_{ws} = Water vapor, by volume, in gas stream, %

M_d = Dry molecular weight of gas stream, lb/lb-mole

M_s = Molecular weight of gas stream actual conditions, (lb/lb-mole)

%CO₂ = Carbon dioxide concentration, by volume, %

%O₂ = Oxygen concentration, by volume, %

%N₂ = Nitrogen concentration, by volume, %

%CO = Carbon monoxide concentration, by volume, %

18 = Molecular weight of H₂O vapor, lb/lb-mole

Linear Velocity of Gas Stream

$$V_s = K_p C_p \left[\sqrt{\Delta P} \right]_{avg} \sqrt{\frac{T_s}{P_s M_s}}$$

Parametera.	Run (1	Run 2	Run 3
Кр	85.49	85.49	85.49
Ср	0.84	0.84	0.84
SQRT (dP) avg	0.93	0.93	0.94
Ts, R	501	503	502
Ps	29.06	29.06	29.06
Vs	51.70	51.92	52.50

Volumetric Flow Rate of Gas Stream

$$Q_{sd} = 3600 \left[1 - B_{ws} \right] V_s A \left[\frac{T_{std}}{T_s} \right] \left[\frac{P_s}{P_{std}} \right]$$

Parameter	Run i	Run 2	Run 3
Bws, %	1.04	1.03	0.92
As, ft ²	96.00	96.00	96.00
Ts, R	501	503	502
Ps	29.06	29.06	29.06
Qsd, SCFH	18,095,546	18,105,763	18,367,994

Nomenclature

A = Cross sectional area of gas stream, ft^2

B_{ws} = Water vapor, by volume, in gas stream, %

 C_p = Calibration factor of pitot tube device, dimensionless

 ΔP = Pressure differential of gas stream, in H_2O

 $K_p = 85.49 \text{ ft/sec}[(lb/lb\text{-mole}\bullet\text{in, Hg})/(^\circ\text{K}\bullet\text{in, H}_2\text{O})]^{1/2}$

M_s = Molecular weight of gas stream actual conditions, (lb/lb-mole)

P_{bar} = Barometric pressure, in. Hg

P_g = Static pressure of gas stream, in Hg P_s = Absolute pressure of gas stream, in. Hg (P_{bar}+P_g)

P_{std} = Absolute standard pressure, 29.92 in Hg

Q_{sd} = Volumetric flow rate of gas stream, dry basis, std cond., ft³/hr

T_s = Absolute temperature of gas stream, ° R

T_{std} = Absolute standard temperature, 528° R

V_s = Linear velocity of gas stream, ft/sec.

3600 = Conversion factor, sec/hr.

Isokinetic Variation

$$I = 100 \bullet T_{s} \frac{\left(0.002669\right)\left\{V_{ic} + \left(\frac{Y_{i} \bullet V_{m}}{T_{m}}\right)\left(P_{bar} + \frac{\Delta H}{13.6}\right)\right\}}{60 \bullet \Theta \bullet V_{s} \bullet P_{s} \bullet A_{n}}$$

Parameter	Run 1	Run 2	Run 3
Ts, R	501	503	502
Vic	10	10	9
Yi	1.036	1.036	1.036
Vm	42.506	42.88	43.356
Tm	503	. 502	501
Pbar	29.06	29.06	29.06
dH avg	1.85	1.86	1.92
sampling time, min.	60	60	60
An	0.00024	0.00024	0.00024
<u> </u>	96.19	97.06	96.95

Nomenclature

I = Isokinetic variation, %

T, = Absolute temperature of gas stream, ° R

V_{ic} = Water vapor condensed from gas stream, ml

Y = Dry gas meter calibration factor

V_m = Dry gas volume measured, ft³

 $T_m = Absolute gas meter temperature, °R$

P_{bar} = Barometric pressure, in. Hg.

 ΔH = Average pressure drop across orifice, in. H_2O .

13.6 = Inches of water per Hg.

V_s = Linear velocity of gas stream, ft/sec.

 P_s = Absolute pressure of gas stream, in. Hg $(P_{ber}+P_g)$

 A_n = Cross sectional area of nozzle, ft^2

Pollutant Concentration & Emission Rate

 $Cs,gr/dscf = (0.0154 gr/mg)(m_n)/(V_{m std})$

E, lb/hr = (Cs)(Qsd)/(7000 gr/lb)

E, lb/hr/24 hr = (E, lb/hr)(24)

Particulate Matter

Pärameter	Run 1	Run 2	Run 3
m _n , mg	8.3	12.5	10.2
V _{m std} , dscf	44.665	45.093	45.694
C, gr/dscf	0.0029	0.0043	0.0034
Q _{sd} , dscf/hr	18,095,546	18,105,763	18,367,994
E, lb/hr	7.40	11.04	9.02
E, lb/24 hr	177.6	265.0	216.5

Lead (Pb)

Parameter	* Runal	Run 2	Run 3
ma, mg	0.22	0.77	0.70
Vmate, dsef	44.665	45.093	45.694
C _s , gr/dscf	0.00008	0.00026	0.00024
Q _{sd} , dscf/hr	18,095,546	18,105,763	18,367,994
E, lb/hr	0.196	0.680	0.619
E, lb/24 hr	4.71	16.32	14.86

Nomenclature

m_n = pollutant material collected, mg or ug

V_{m(std)} = Dry gas volume corrected to dry, standard conditions, ft³

Cs, gr/dscf = pollutant concentration, grains per dry standard cubic ft.

Q_{sd} = Volumetric flow rate of gas stream, dry basis, std cond., ft³/hr

E, lb/hr = pollutant mass emission rate, pounds per hour

E, lb/hr/24 hr = pollutant mass emission rate, lb/hr per 24 hour period

Calculations acres

The following section provides a detailed description of all calculations used in the determination of emission rates for. Also listed are all of the intermediate values associated with these calculations.

#8 Refinery Process Kettles

Dry Gas Meter Volume

$$V_{m(std)} = Vm \left[\frac{T_{STD}}{T_m} \right] \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{P_{std}} \right] = 17.64 \left[Y \right] V_m \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_m} \right]$$

A Razameter	Rub (Filia	Run2	P Rome
Vm	37.404	37.723	37.625
Tm	503	504	501
Pbar	30.1	30.1	30.1
ΔH avg	1.42	1.42	1.43
C Factor (Y)	1.036	1.036	1.036
Vm std	39.612	39.891	39.994

Nomenclature

 ΔH = Average pressure drop across orifice, in. H₂O.

P_{bar} = Barometric pressure, in. Hg.

T_m = Absolute gas meter temperature, °R

V_m = Dry gas volume measured, ft³

Y = Dry gas meter calibration factor

 $V_{m(std)}$ = Dry gas volume corrected to dry, standard conditions, ft^3

Water Vapor Condensed

$$V_{wcad} = \left[\frac{P_w \bullet R \bullet T_{std}}{M_w \bullet P_{std}}\right] [V_f - V_i] = 0.04707 [V_f - V_i]$$

$$V_{wsgad} = \left[\frac{R \bullet T_{std}}{M_w \bullet P_{std}}\right] [W_f - W_i] = 0.04715 [W_f - W_i]$$

Moisture Content

$$B_{ws} = \left[\frac{V_{wcad} + V_{wsgad}}{V_{wcad} + V_{wsgad} + V_{mad}}\right] \bullet 100$$

Parameter	Run 1	Run 2	Run 3
V _{wc}	0.047	0.047	0.094
Vwsg	0.141	0.189	0.094
Bws, %	0.47	0.59	0.47

Nomenclature:

B_{ws} = Water vapor, by volume, in gas stream, %

 ΔH = Average pressure drop across orifice, in. H_2O .

P_{bar} = Barometric pressure, in. Hg.

T_m = Absolute gas meter temperature, °R

 V_f , V_i = Impinger system volume, final & initial, ml

V_m = Dry gas volume measured, ft³

V_{m(std)} = Dry gas volume corrected to dry, standard conditions, ft³

 $V_{wc(std)}$ = Water vapor condensed, ml

Vwsg(std) = Water vapor captured in silica gel, g

W_f, W_i = Silica gel weight, final & initial, g

Y = Dry gas meter calibration factor

0.04707 = Conversion factor, ft^3/ml

 $0.04715 = \text{Conversion factor, } \text{ft}^3/\text{g}$

Dry Molecular Weight

$$M_d = 0.44[\%CO_2] + 0.32[\%O_2] + 0.28[\%CO+\%N_2]$$

Molecular Weight of Gas Stream

$$M_s = M_d \bullet \left[\frac{1 - Bws}{100} \right] + 18 \bullet \left[\frac{Bws}{100} \right]$$

na de Parameter de la constante de la constant	Runt 14	Run 2	2 Run 325 1
02, %	20.9	20.9	20.9
CO2, %	0.0	0.0	0.0
CO + N2, %	79.1	79.1	79.1
Bws, %	0.47	0.59	0.47
Md, lb/lb-mole	28.84	28.84	28.84
Ms, lb/lb-mole	28.78	28.77	28.79

Nomenclature

Bws = Water vapor, by volume, in gas stream, %

M_d = Dry molecular weight of gas stream, lb/lb-mole

M_s = Molecular weight of gas stream actual conditions, (lb/lb-mole)

%CO₂ = Carbon dioxide concentration, by volume, %

%O₂ = Oxygen concentration, by volume, %

%N₂ = Nitrogen concentration, by volume, %

%CO = Carbon monoxide concentration, by volume, %

18 = Molecular weight of H₂O vapor, lb/lb-mole

Linear Velocity of Gas Stream

$$V_s = K_{\rho} C_{\rho} \left[\sqrt{\Delta P} \right]_{avg} \sqrt{\frac{T_s}{P_s M_s}}$$

Parameter	Run 1	Run 2	Run 3
Кр	85.49	85.49	85.49
Ср	0.84	0.84	0.84
SQRT (dP) avg	0.42	0.42	0.43
Ts, R	513	517	512
Ps	30.11	30.22	30.22
Vs	23.38	23.34	23.45

Volumetric Flow Rate of Gas Stream

$$Q_{sd} = 3600 \left[1 - B_{ws} \right] V_s A \left[\frac{T_{std}}{T_s} \right] \left[\frac{P_s}{P_{std}} \right]$$

Parameter	Run 1	Run 2	Run 3
Bws, %	0.47	0.59	0.47
As, ft ²	56.74	56.74	56.74
Ts, R	513	517	512
Ps	30.11	30.22	30.22
Qsd, SCFH	4,927,073	4,890,445	4,960,585

Nomenclature

A = Cross sectional area of gas stream, ft^2

Bws = Water vapor, by volume, in gas stream, %

 C_0 = Calibration factor of pitot tube device, dimensionless

 ΔP = Pressure differential of gas stream, in H₂O

 $K_p = 85.49 \text{ ft/sec}[(lb/lb-mole\bulletin. Hg)/(^oK\bulletin. H_2O)]^{1/2}$

M_s = Molecular weight of gas stream actual conditions, (lb/lb-mole)

P_{bur} = Barometric pressure, in. Hg

Pg = Static pressure of gas stream, in Hg

 P_s = Absolute pressure of gas stream, in. Hg ($P_{bar}+P_g$)

P_{std} = Absolute standard pressure, 29.92 in. Hg

Q_{sd} = Volumetric flow rate of gas stream, dry basis, std cond., ft³/hr

T_s = Absolute temperature of gas stream, ° R

T_{std} = Absolute standard temperature, 528° R

V, = Linear velocity of gas stream, ft/sec.

3600 = Conversion factor, sec/hr.

Isokinetic Variation

$$I = 100 \bullet T_s \left[\frac{(0.002669) \left\{ V_{ic} + \left(\frac{Y_i \bullet V_m}{T_m} \right) \left(P_{bar} + \frac{\Delta H}{13.6} \right) \right\}}{60 \bullet \Theta \bullet V_s \bullet P_s \bullet A_n} \right]$$

Parameter	Run 1	Run 2	Run 3
Ts, R	513	517	512
Vie	4	5	4
Yi	1.036	1.036	1.036
Vm	37.404	37.723	37.625
Ţm	503	504	50]
Pbar	30.1	30.1	30.1
dH avg	1.42	1.42	1.43
sampling time, min.	60	60	60
An	0.000458	0.000458	0.000458
1	99.55	101.00	99.83

Nomenclature

I = Isokinetic variation, %

T_s = Absolute temperature of gas stream, ° R

V_{ic} = Water vapor condensed from gas stream, ml

Y = Dry gas meter calibration factor

V_m = Dry gas volume measured, ft³

T_m = Absolute gas meter temperature, °R

Pbar = Barometric pressure, in. Hg.

 ΔH = Average pressure drop across orifice, in. H_2O .

13.6 = Inches of water per Hg.

V_s = Linear velocity of gas stream, ft/sec.

 P_g = Absolute pressure of gas stream, in. Hg ($P_{bar}+P_g$)

 $A_n = Cross sectional area of nozzle, <math>R^2$

Particulate Concentration & Emission Rate

$$Cs,gr/dscf = (0.0154 gr/mg)(m_n)/(V_{m std})$$

$$E, lb/hr = (Cs)(Qsd)/(7000 gr/lb)$$

E, lb/hr/24 hr = (E, lb/hr)(24)

Particulate Matter

Parameter	Ruble	Run 2	Run 3
m _R , mg	6.3	9.8	5.8
V _{m std} , dscf	39.612	39.891	39.994
C _s , gr/dscf	0.00245	0.00378	0.00223
Q _{sd} , dscf/hr	4,927,073	4,890,445	4,960,585
E, lb/hr	1.724	2.643	1.583
E, lb/24 hr	41.38	63.44	37.98

Lead (Pb)

Parameter	Runt	Run 2	-Run 3
ṃ, mg	1.20	0.78	0.35
V _{m std} , dsef	39.612	39.891	39.994
C _s , gr/dscf	0.00047	0.00030	0.00013
Q _{sd} , dscf/hr	4,927,073	4,890,445	4,960,585
E, lb/hr	0.328	0.210	0.096
E, lb/24 hr	7.88	5.05	2.92

Nomenclature

m_n = pollutant material collected, mg or ug

 $V_{m(std)}$ = Dry gas volume corrected to dry, standard conditions, ft^3 Cs, gr/dscf = pollutant concentration, grains per dry standard cubic ft.

Q_{sd} = Volumetric flow rate of gas stream, dry basis, std cond., ft³/hr

E, lb/hr = pollutant mass emission rate, pounds per hour

E, lb/hr/24 hr = pollutant mass emission rate, lb/hr per 24 hour period

Calculations

The following section provides a detailed description of all calculations used in the determination of emission rates for . Also listed are all of the intermediate values associated with these calculations.

#9 Refinery Bldg. Baghouse

Dry Gas Meter Volume

$$V_{m(std)} = Vm \left[\frac{T_{STD}}{T_m} \right] \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{P_{std}} \right] = 17.64 \left[Y \right] V_m \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_m} \right]$$

Rarameter Parameter	Runyl	Run 2	Run 3
Vm	41.653	41.523	40.384
Tm	501	496	496
Pbar	30.2	30.2	30.2
ΔH avg	1.77	1.73	1.74
C Factor (Y)	1.036	1.036	1.036
Vm std	44.497	44.820	43.570

Nomenclature

 ΔH = Average pressure drop across orifice, in. H_2O .

P_{bar} = Barometric pressure, in. Hg.

T_m = Absolute gas meter temperature, °R

V_m = Dry gas volume measured, ft³

Y = Dry gas meter calibration factor

 $V_{m(std)}$ = Dry gas volume corrected to dry, standard conditions, ft^3

Water Vapor Condensed

$$V_{wead} = \left[\frac{P_w \bullet R \bullet T_{std}}{M_w \bullet P_{std}}\right] [V_f - V_t] = 0.04707 [V_f - V_t]$$

$$V_{wsgssd} = \left[\frac{R \bullet T_{std}}{M_w \bullet P_{std}}\right] [W_f - W_i] = 0.04715 [W_f - W_i]$$

Moisture Content

$$B_{ws} = \left[\frac{V_{wcas} + V_{wsgas}}{V_{wcas} + V_{wsgas} + V_{mas}}\right] \bullet 100$$

Parameter de	Rmin	Run 2	Run Salas
V _{wc}	0.141	0.188	0.188
V _{wsg}	0.189	0.141	0.141
Bws, %	0.74	0.73	0.75

Nomenclature:

B_{ws} = Water vapor, by volume, in gas stream, %

 ΔH = Average pressure drop across orifice, in. H_2O .

P_{bar} = Barometric pressure, in. Hg.

T_m = Absolute gas meter temperature, °R

V_f, V_i = Impinger system volume, final & initial, ml

V_m = Dry gas volume measured, ft³

 $V_{m(sid)}$ = Dry gas volume corrected to dry, standard conditions, ft^3

 $V_{wc(std)}$ = Water vapor condensed, ml

V_{wsg(std)} = Water vapor captured in silica gel, g

W₆ W_i = Silica gel weight, final & initial, g

Y = Dry gas meter calibration factor

0.04707 = Conversion factor, ft³/ml

0.04715 = Conversion factor, ft³/g

Dry Molecular Weight

$$M_d = 0.44[\%CO_2] + 0.32[\%O_2] + 0.28[\%CO+\%N_2]$$

Molecular Weight of Gas Stream

$$M_s = M_d \bullet \left[\frac{1 - Bws}{100} \right] + 18 \bullet \left[\frac{Bws}{100} \right]$$

Parameter	Runie	Run 2	Run 3
Ó2, %	20.9	20.9	20.9
CO2, %	0.0	0.0	0.0
CO + N2, %	79.1	79.1	79.1
Bws, %	0.74	0.73	0.75
Md, lb/lb-mole	28.84	28.84	28.84
Ms, lb/lb-mole	28.76	28.76	28.75

Nomenclature

B_{ws} = Water vapor, by volume, in gas stream, %

M_d = Dry molecular weight of gas stream, lb/lb-mole

M_s = Molecular weight of gas stream actual conditions, (lb/lb-mole)

%CO₂ = Carbon dioxide concentration, by volume, %

%O₂ = Oxygen concentration, by volume, %

%N₂ = Nitrogen concentration, by volume, %

%CO = Carbon monoxide concentration, by volume, %

18 = Molecular weight of H₂O vapor, lb/lb-mole

Linear Velocity of Gas Stream

$$V_s = K_p C_p \left[\sqrt{\Delta P} \right]_{avg} \sqrt{\frac{T_s}{P_s M_s}}$$

Parameter	RUDITE	r Run 2	Run 3
Кр	85.49	85.49	85.49
Ср	0.84	0.84	0.84
SQRT (dP) avg	0.91	0.90	0.90
Ts, R	498	496	498
Ps	29.46	29.46	29.46
Vs	50.10	49.56	49.66

Volumetric Flow Rate of Gas Stream

$$Q_{sd} = 3600 \left[1 - B_{ws} \right] V_s A \left[\frac{T_{std}}{T_s} \right] \left[\frac{P_s}{P_{std}} \right]$$

Parameter	Rún 1	Run 2	Run 3
Bws, %	0.74	0.73	0.75
As, ft ²	78.67	78.67	78.67
Ts, R	498	496	498
Ps	29.46	29.46	29.46
Qsd, SCFH	14,693,663	14,590,924	14,581,830

Nomenclature

A = Cross sectional area of gas stream, ft²

B_{ws} = Water vapor, by volume, in gas stream, %

C_p = Calibration factor of pitot tube device, dimensionless

 ΔP = Pressure differential of gas stream, in H₂O

 $K_p = 85.49 \text{ ft/sec}[(lb/lb-mole\bulletin. Hg)/(°K•in. H₂O)]^{1/2}$

M_s = Molecular weight of gas stream actual conditions, (lb/lb-mole)

P_{bar} = Barometric pressure, in. Hg

P_g = Static pressure of gas stream, in Hg

 P_s = Absolute pressure of gas stream, in. Hg ($P_{bar}+P_g$)

P_{std} = Absolute standard pressure, 29.92 in. Hg

Q_{sd} = Volumetric flow rate of gas stream, dry basis, std cond., ft³/hr

T_s = Absolute temperature of gas stream, ° R

T_{std} = Absolute standard temperature, 528° R

V_s = Linear velocity of gas stream, ft/sec.

3600 = Conversion factor, sec/hr.

Isokinetic Variation

$$I = 100 \bullet T_{s} \left[\frac{(0.002669) \left\{ V_{ic} + \left(\frac{Y_{i} \bullet V_{m}}{T_{m}} \right) \left(P_{bar} + \frac{\Delta H}{13.6} \right) \right\}}{60 \bullet \Theta \bullet V_{s} \bullet P_{s} \bullet A_{n}} \right]$$

Parameter	Run 1	Run 2	Run 3
Ts, R	498	496	498
Vic	7	7	7
Yi	1.036	1.036	1.036
Vm	41.653	41.523	40.384
Tm	501	496	496
Pbar	30.2	30.2	30.2
dH avg	1.77	1.73	1.74
sampling time, min.	60	60	60
An	0.00024	0.00024	0.00024
I	99.13	100.56	97.81

Nomenclature

I = Isokinetic variation, %

T_s = Absolute temperature of gas stream, ° R

Vic = Water vapor condensed from gas stream, ml

Y = Dry gas meter calibration factor

V_m = Dry gas volume measured, ft³

T_m = Absolute gas meter temperature, °R

P_{bar} = Barometric pressure, in. Hg.

 ΔH = Average pressure drop across orifice, in. H_2O .

13.6 = Inches of water per Hg.

V_s = Linear velocity of gas stream, ft/sec.

 P_s = Absolute pressure of gas stream, in. Hg $(P_{bar}+P_g)$

 A_n = Cross sectional area of nozzle, R^2

Pollutant Concentration & Emission Rate

 $Cs, gr/dscf = (0.0154 gr/mg)(m_n)/(V_{m std})$

E, lb/hr = (Cs)(Qsd)/(7000 gr/lb)

E, lb/hr/24 hr = (E, lb/hr)(24)

Particulate Matter

Parameter	A Runii	Run 2	Run 3
m _n , mg	7.000	8.300	5.700
V _{m std} , dscf	44.497	44.820	43.570
C _s , gr/dscf	0.0024	0.0029	0.0020
Q _{sd} , dscf/hr	14,693,663	14,590,924	14,581,830
E, lb/hr	5.09	5.94	4.20
E, lb/24 br	122.05	142.67	100.72

Lead (Pb)

Parameter	Run 1	Run 2	Run 3
m _n , mg	4.3	0.98	0.67
V _{m std} , dsef	44.497	44.820	43.570
C _s , gr/dscf	0.00149	0.00034	0.00024
Qed, dscf/hr	14,693,663	14,590,924	14,581,830
E, lb/hr	3.12	0.70	0.49
E, lb/24 hr	74.97	16.85	11.84

Nomenclature

m_n = pollutant material collected, mg or ug

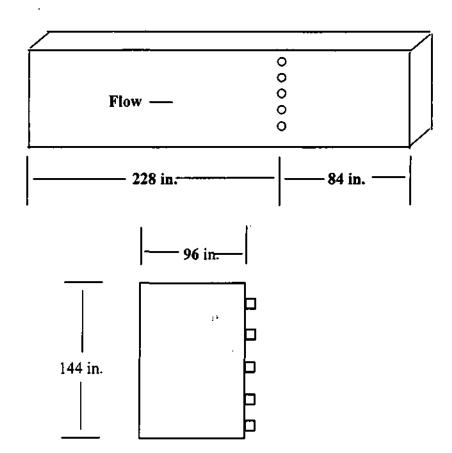
 $V_{m(std)}$ = Dry gas volume corrected to dry, standard conditions, ft^3

Cs, gr/dscf = pollutant concentration, grains per dry standard cubic ft.

Q_{sd} = Volumetric flow rate of gas stream, dry basis, std cond., ft³/hr

E, lb/hr = pollutant mass emission rate, pounds per hour

E, lb/hr/24 hr = pollutant mass emission rate, lb/hr per 24 hour period

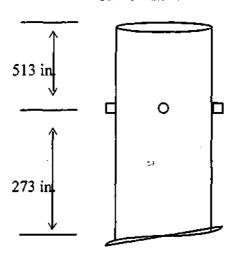

Appendix A - Diagrams

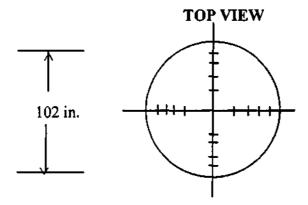
Source Dimensions / Traverse Point Diagram

Sample Train Schematic(s)

#7 Blast Furnace Bldg.

: }

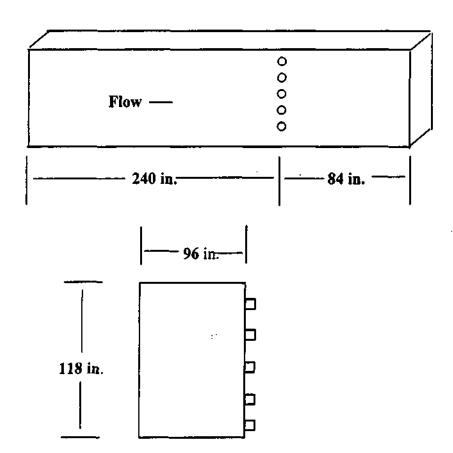



Equivalent Diameter: 115.2 in. Stack area: 13,824 in² (96 ft²)

	Upstream	Downstream
Distance, in.	84	228
Equiv. Dia.	0.7	2.0
Point	% Diameter	Distance, in.
1	12.5	12.0
2	29.2	28.0
3	45.8	44.0
4	62.5	60.0
5	79.2	76.0
6	95.3	92.0

^{*} Traverse point distance includes a 4 inch port stand-off.

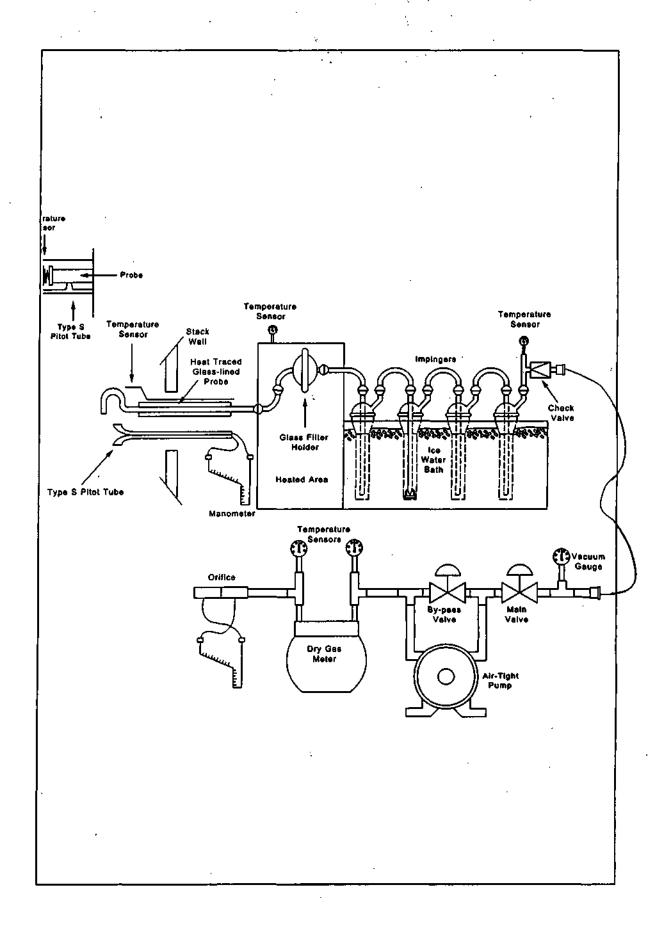
SIDE VIEW



Stack area: 8,171 in² (56.74 ft²)

	Upstream	Downstream
Distance, in.	513	273
Equiv. Dia.	5.0	2.7
Point	% Diameter	Distance, in.
11	3.2	7.3
2	10.5	14.7
3	19.4	23.8
4	32.3	36.9
5	67.7	73.1
_6	80.6	86.2
7	89-5	95.3
8	96.8	102.7

^{*} Traverse point distance includes a 4 inch port stand-off.


#9 Refinery Bldg.

Equivalent Diameter: 105.9 in. Stack area: $11,328 \text{ in}^2$ (78.67 ft^2)

State are	70.07 10)	
	Upstream	Downstream
Distance, in.	84	240
Equiv. Dia.	0.8	2.3
Point	% Diameter	Distance, in.
1	12.5	12.0
2	29.2	28.0
3	45.8	44.0
4	62.5	60.0
5	79.2	76.0
6	95.8	92.0

^{*} Traverse point distance includes a 4 inch port stand-off.

Appendix B - Analysis Results (PM/Pb)

Pb Analysis Reports

PM Analysis Reports

Chain of Custody Records

REPORT

8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060 FAX (501) 224-5072

White Star Environmental Consulting ATTN: Mr. Joe Sewell

7886 Kirkwood Cove

Olive Branch, MS 38654

January 7, 2003 Control No. 70556 Page 1 of 3

Project Description:

Four (4) filter and eight (8) impinger sample(s) received on

AMERICAN

December 31, 2002

Doe Run Company-Herculaneum Facility

#7 Baghouse 12/3/2002

Dear Mr. Joe Sewell:

Please find enclosed analytical results for the sample(s) submitted to American Interplex Corporation (AIC) on December 31, 2002. The following results are applicable only to samples identified by the control number designated above. Accurate assessment of the data requires access to the entire document. Each section of the report has been reviewed and approved by the appropriate laboratory director or a qualified designee.

If you have any questions, please reference Control No. 70556.

KH/lims

Enclosure(s): Analysis Protocol Form

John Overbey Laboratory Dikector

INTERPLEX CORPORATION

REPORT

8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060 FAX (501) 224-5072

White Star Environmental Consulting 7886 Kirkwood Cove Olive Branch, MS 38654

January 7, 2003 Control No. 70556 Page 2 of 3

ATTN: Mr. Joe Sewell

Project Description:

Four (4) filter and eight (8) impinger sample(s) received on December 31, 2002
Doe_Run Company-Herculaneum Facility

#7 Baghouse 12/3/2002

Sample Identification: #1927 Run #1, Impinger Catch, Impinger Wash 12/3/02

AIC No. 70556-1

Parameter Time Analyzed By Method Result 02JAN03 0933 201/65 0.22 mg Lead EPA 12

Sample Identification: #1943 Run #2, Impinger Catch, Impinger Wash 12/3/02 AIC No. 70556-2

<u>Parameter</u> Method Result Batch Time Analyzed By S9675 02JAN03 0933 201/65 EPA 12 0.77 mgLead

Sample Identification: #1942 Run #3, Impinger Catch, Impinger Wash 12/3/02

AIC No. 70556-3

Time Analyzed By Method Result Parameter Lead **EPA** 12 02JAN03 0933 201/65 0.70 mg

Sample Identification: Blank

AIC'No. 70556-4

Method Parameter Result <u>Batch Time Analyzed By</u> \$9675 02JAN03 0933 201/65 Lead EPA 12 $<0.\overline{004}$ mg

Q C R E P O R T 8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060 FAX (501) 224-5072

White Star Environmental Consulting 7886 Kirkwood Cove Olive Branch, MS 38654 January 7, 2003 Control No. 70556 Page 3 of 3

<u>Parameter</u>

Recovery

Relative % Difference 1.90

Batch S9675

Data has been validated using standard quality control measures (blank, laboratory control, spike and spike duplicate) performed on at least 10% of samples analyzed. Quality Assurance, instrumentation maintenance and calibration were performed in accordance with guidelines established by the USEPA. SM method = Standard Methods for the Examination of Water and Wastewaster, 20th edition, 1998.

KH/lims

ANALYSIS PROTOCOL

Facility:

Doe Run Company - Herculaneum Facility

Source ID:

#7 Baghouse

Test Date:

12/3/2002

i		1 - · · · · · · · · · · · · · · · · · ·			1 A.
	Sample ID	Sample Type	Analysis Req'	Method]Ai
1	Run #1	Filter # 1927	Lead	12	ł
3	Run #2	Filter # 1943	Lead	12]2
>5	Run #3	Filter # 1942	Lead	12	3
√ 2√	Run #1	Imp Catch	Lead	12	ĺ
_ ~ 4	Run #2	Imp Catch	Lead	12]2
1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Run #3	Imp Catch	Lead	12	3
1/3/-2	Run #1	HNO ₃ Rinse	Lead	12] [
1/2, 4	Run #2	HNO ₃ Rinse	Lead	12	2
-6	Run #3	HNO ₃ Rinse	Lead	12]3
マ	Blank	HNO ₃ Rinse	Lead	12	4
· &	Blank	Filter	Lead	12	14

Composite "Imp Catch" samples with "HNO₃ Rinse" samples by run number. Report results in mg or ug.

Please fax results upon completion to Joe Sewell at (662) 895-1651.

Main Office: P.O. Box 238; Olive Branch, MS 38654; (601) 893-3063; Fax: (601) 895-1651

REPORT

8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060 FAX (501) 224-5072

White Star Environmental Consulting

ATTN: Mr. Joe Sewell 7886 Kirkwood Cove

Olive Branch, MS 38654

January 7, 2003 Control No. 70559 Page 1 of 3

Project Description:

Three (3) filter and six (6) impinger sample(s) received on December 31, 2002

Doe Run Company-Herculaneum Facility

#8 Baghouse 12/5/2002

Dear Mr. Joe Sewell:

Please find enclosed analytical results for the sample(s) submitted to American Interplex Corporation (AIC) on December 31, 2002. The following results are applicable only to samples identified by the control number designated above. Accurate assessment of the data requires access to the entire document. Each section of the report has been reviewed and approved by the appropriate laboratory director or a qualified designee.

If you have any questions, please reference Control No. 70559.

AMERICAN INTERPLEX CORPORATION

KH/lims

Enclosure(s): Analysis Protocol Form

John Overbey Laboratory Qirector

REPORT

8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060 FAX (501) 224-5072

White Star Environmental Consulting 7886 Kirkwood Cove Olive Branch, MS 38654

January 7, 2003 Control No. 70559 Page 2 of 3

ATTN: Mr. Joe Sewell

Project Description:

Three (3) filter and six (6) impinger sample(s) received on December 31, 2002

Doe Run Company-Herculaneum Facility

#8 Baghouse 12/5/2002

Sample Identification: 3003 Run #1 Impinger Catch, Impinger Wash 12/5/02

AIC No. 70559-1

Method Result Time Analyzed By <u>Parameter</u> <u>Batch</u> Lead EPA 12 1.2 mg \$9675 02JAN03 0933 201/65

Sample Identification: 3000 Run #2 Impinger Catch, Impinger Wash 12/5/02

AIC No. 70559-2

Parameter Method Result Time Analyzed By Batch EPA 12 S9675 02JAN03 0933 201/65 Lead 0.78 mg

Sample Identification: 3002 Run #3 Impinger Catch, Impinger Wash 12/5/02

AIC No. 70559-3

Parameter Method Result Batch Time Analyzed By Lead **EPA** 12 \$9675 02JAN03 0933 201/65 0.35 mg

Q C R E P O R T 8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060 FAX (501) 224-5072

White Star Environmental Consulting 7886 Kirkwood Cove Olive Branch, MS 38654 January 7, 2003 Control No. 70559 Page 3 of 3

<u>Parameter</u> Lead Recovery 83.6 Relative % Difference 1.90

Batch S9675

Data has been validated using standard quality control measures (blank, laboratory control, spike and spike duplicate) performed on at least 10% of samples analyzed. Quality Assurance, instrumentation maintenance and calibration were performed in accordance with guidelines established by the USEPA.

SM method = Standard Methods for the Examination of Water and Wastewaster, 20th edition, 1998.

KH/lims

ANALYSIS PROTOCOL

Facility:

Doe Run Company – Herculaneum Facility

Source ID:

#8 Baghouse

Test Date:

12/5/2002

	Sample ID	Sample Type	Analysis Req'	Method
1	Run #1	Filter # 3003	Lead	12
ВĒ	Run #2	Filter # 3000	Lead	12
5	Run #3	Filter # 3002	Lead	12
ાં∟	Run #1	Imp Catch	Lead	12
₩ 🗀	Run #2	Imp Catch	Lead	12
ĠΓ	Run #3	Imp Catch	Lead	12
$v \not = \Box$	Run #1	HNO ₃ Rinse ¹²	Lead	12
મ ∤ [Run #2	HNO ₃ Rinse	Lead	12
	Run #3	HNO ₃ Rinse	Lead	12
ʹ╮╽匚	Blank	HNO3-Rinse	Lead	12-
' [Blank	Filter	Lead	12-

Composite "Imp Catch" samples with "HNO₃ Rinse" samples by run number. Report results in mg or ug.

Please fax results upon completion to Joe Sewell at (662) 895-1651.

Main Office: P.O. Box 238; Olive Branch, MS 38654; (601) 893-3063; Fax: (601) 895-1651

REPORT

8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060 FAX (501) 224-5072

White Star Environmental Consulting

ATTN: Mr. Joe Sewell 7886 Kirkwood Cove Olive Branch, MS 38654 January 7, 2003 Control No. 70561 Page 1 of 3

Project Description:

Three (3) filter and six (6) impinger sample(s) received on December 31, 2002

Ву

Doe Run Company-Herculaneum Facility

#9 Baghouse 12/4/2002

Dear Mr. Joe Sewell:

Please find enclosed analytical results for the sample(s) submitted to American Interplex Corporation (AIC) on December 31, 2002. The following results are applicable only to samples identified by the control number designated above. Accurate assessment of the data requires access to the entire document. Each section of the report has been reviewed and approved by the appropriate laboratory director or a qualified designee.

If you have any questions, please reference Control No. 70561.

AMERICAN INTERPLEX CORPORATION

John Overbey

Vaboratory Dikector

KH/lims

Enclosure(s): Analysis Protocol Form

REPORT

8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060 FAX (501) 224-5072

White Star Environmental Consulting 7886 Kirkwood Cove Olive Branch, MS 38654

January 7, 2003 Control No. 70561 Page 2 of 3

ATTN: Mr. Joe Sewell

Project Description:

Three (3) filter and six (6) impinger sample(s) received on December 31, 2002

Doe Run Company-Herculaneum Facility

#9 Baghouse 12/4/2002

Sample Identification: #1931 Run #1 Impinger Catch, Impinger Wash 12/4/02

AIC No. 70561-1

Parameter Method Result Batch Time Analyzed By Lead EPA 12 4.3 mg S9675 02JAN03 0933 201/65

Sample Identification: #2003 Run #2 Impinger Catch, Impinger Rinse 12/4/02

AIC No. 70561-2

Parameter Method Result Batch Time Analyzed By Lead EPA 12 0.98 mg <u> 59675</u> 02JAN03 0933 201/65

Sample Identification: #2004 Run #3 Impinger Catch, Impinger Wash 12/4/02

AIC No. 70561-3

Parameter Method <u>Result</u> Time Analyzed By Batch Lead **EPA** 12 0.67 mg\$9675 02JAN03 0933 201/65

Q C R E P O R T 8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060 FAX (501) 224-5072

White Star Environmental Consulting 7886 Kirkwood Cove Olive Branch, MS 38654 January 7, 2003 Control No. 70561 Page 3 of 3

<u>Parameter</u> Lead Recovery 83.6 Relative % Difference 1.90

Batch S9675

Data has been validated using standard quality control measures (blank, laboratory control, spike and spike duplicate) performed on at least 10% of samples analyzed. Quality Assurance, instrumentation maintenance and calibration were performed in accordance with guidelines established by the USEPA.

SM method = Standard Methods for the Examination of Water and Wastewaster, 20th edition, 1998.

KH/lims

ANALYSIS PROTOCOL

Facility:

Doe Run Company - Herculaneum Facility

Source ID:

#9 Baghouse

Test Date:

12/4/2002

. [Sample ID	Sample Type	Analysis Req'	Method
\ [Run #1	Filter # 1931	Lead	12
\$ [Run #2	Filter # 2003	Lead	12
[5]	Run #3	Filter # 2004	Lead	12
4 C	Run #1	Imp Catch	Lead	12
4 	Run #2	Imp Catch	Lead	12
4	Run #3	Imp Catch	Lead	12
4 Г	Run #1	HNO ₃ Rinse	Lead	12
4	Run #2	HNO ₃ Rinse	Lead	12
4[Run #3	HNO ₃ Rinse	Lead	12
₹Γ	-Blank	HNO3 Rinse	- Lead	12
' [- Blank	Filter	Lead	12-

Composite "Imp Catch" samples with "HNO $_3$ Rinse" samples by run number. Report results in mg or ug.

Please fax results upon completion to Joe Sewell at (662) 895-1651.

Main Office: P.O. Box 238; Olive Branch, MS 38654; (601) 893-3063; Fax: (601) 895-1651

Gravimetric Analysis Report

Doe Run Company Herculaneum, MO #9 Baghouse

A	Acetone Blank Sample						
	Volume, ml	40	Date/Time				
1	1st weight	35.1089	12/15; 8:00				
	2nd weight	35.1089	12/26; 10:00				
	Average	35.1089					
	Tare Wt.	35.1087	İ				
	Blank Wt.	0.0002					
	Filter S2	mples					
Item	Run 1	Run 2	Run 3				
Filter No.	1931	2003	2004				
1st weight	1.1389	1.243	1.2392				
2nd weight	1.1389	1.2433	1.2394				
Average	1.1389	1.24315	1.2393				
Tare Wt.	Tare Wt. 1.1342		1.2369				
Wt. of PM	0.0047	0.00135	0.0024				
A	Acetone Wash Samples						
Item	Run 1	Run 2	Run 3				
Volume, ml	50	60	65				
1st weight	35.3606	33.4327	35.7543				
2nd weight	35.3608	33.433	35.7543				
Average	35.3607	33.43285	35.7543				
Tare Wt.	35,3581	33.4256	35.7507				
Blank Wt.	0.0002	0.0003	0.0003				
Wt. of PM	0.0023	0.0069	0.0033				
	articulate N	atter, mg					
Filter Wt.	4.7	1.3	2.4				
Acetone Wt.	2.3	6.9	3.3				
Total Wt.	7.0	8.3	5.7				

Analyst:

Hygrometer:

<u>to 0</u>%

Gravimetric Analysis Report

Doe Run Company Herculaneum, MO #8 Baghouse

			. 				
Acetone Blank Sample							
ļ.	Volume, mi	40	<u>Date/Time</u>				
	1st weight	35.1089	12/15; 8:00				
j	2nd weight	35.1089	12/26; 10:00				
	Average	35.1089					
	Tare Wt.	35.1087					
	Blank Wt.	0.0002					
	Filter Sa	mples					
Item	Run 1	Run 2	Run 3				
Filter No.	3003	3000	3002				
1st weight	1.1639	1.2475	1.2217				
2nd weight	1.1639	1.2477	1.2217				
Average	1.1639	1.2476	1.2217				
Tare Wt.	1.1607	1.2425	1.2201				
Wt. of PM	0.0032	0.0051	0.0016				
A	Acetone Wash Samples						
Item	Run 1	Run 2	Run 3				
Volume, ml	40	55	55				
1st weight	49.4396	36.1486	35.2781				
2nd weight	49.4398	36.1487	35.2782				
Average	49.4397	36.14865	35.2782				
Tare Wt.	49.4364	36.1437	35.2737				
Blank Wt.	0.0002	0.0003	0.0003				
Wt. of PM	0.0031	0.0047	0.0042				
P	articulate N	latter, mg					
Filter Wt.	3.2	5.1	1.6				
Acetone Wt.	3.1	4.7	4.2				
Total Wt.	6.3	9.8	5.8_				

Analyst:	<u>h</u>	Kg.	
Hygrometer:	40	0%	

Gravimetric Analysis Report

Doe Run Company Herculaneum, MO #7 Baghouse

A	cetone Blar	ık Sample	
"	Volume, ml	40	<u>Date/Time</u>
	1st weight	35.1089	12/15; 8:00
	2nd weight	35.1089	12/26; 10:00
	Average	35.1089	
	Tare Wt.	35.1087	J
	Blank Wt.	0.0002	·
	Filter Sa	mp <u>l</u> es	
Item	Run 1	Run 2	Run 3
Fiiter No.	1927	1943	1942
1st weight	1.2769	1.3446	1.3176
2nd weight	1.2769	1.3447	1.3178
Average	1.2769	1.34465	1.3177
Tare Wt.	1.275	1.3363	1.3109
Wt. of PM	0.0019	0.00835	0.0068
A	cetone Was	h Samples	
Item	Run 1	Run 2	Run 3
Volume, ml	70	60	55
. 1st weight	53.0244	52.6489	49.1823
2nd weight	53.0244	52.6491	49.1826
Average	53.0244	52.649	49.1825
Tare Wt.	53.0176	52.6446	49.1788
Blank Wt.	0.0003	0.0003	0.0003
Wt. of PM	0.0064	0.0041	0.0034
P	articulate M	latter, mg	
Filter Wt.	1.9	8.4	6.8
Acetone Wt.	6.4	4.1	3.4
Total Wt.	8.3	12.5	10.2

Analyst:

Hygrometer:

%

Appendix C - Field Data Records

N o
Facility Doekun
Location de Tubre m. MO
Operator
Date 12/3/02
Run No. 1
Sample Box No. AV
Meter Box No. APSX
Meter Δ H, 1,3
C Factor 1 3
Pitot Coeff (C) () Y

#7	Rayhouse
----	----------

Diameter (in.)

Downstream (in.)

Upstream (in.)

Ambient Temp 33
Barometric Pressure 25,8 (29 %)
Diameter 0.2
Leak Rate (cfm) MOC 15" (1)
Static Pressure House House
Filter No. 192
Impinger Vol. (initial) <u>2とこ</u>
Impinger Vol. (final) 2006
Silica Gel Wt. (initial) 40 C
Silica Gel Wt. (final) 410

Cetspart 2min/point

_			Initial I	Meter Rea	ding: 12	<u> </u>	<u> </u>	i		
Traverse Point	Sample Time	Sample Vacuum	Stack Temp.	ΔР	ΔН	Gas Volume	DGM	DGM	Filter	Last
No.	(min.)	(in. Hg)	(°F)	in. H ₂ O	in. H ₂ O :	(ft ³)	Temp.	Temp.	Temp. (*F)	lmpinger (°F)
1	1030/2	(2)	34	کھاں	1,4	140.7	_عادً	36	1	37.
2	1034	k	34	365	1.4	141.9	27	36		33
3	1036	10	32	,75	1.1	143.2	40	36		36
4	1038_	60	3,9	75	1.6	144.7	42	<u> </u>		40
5	10-10	1/2	45	,75	1.6	1460	44	36		42
6.	1042	تصا	47	. 70	1.5	147.2	45	37		43
7	10-14 E	15	41	160	1,+	144.4	41	37		40
8	043	<u> </u>	45	1.75	<u>ان (ا</u>	141.6	14	37		42
9	1050	7	38_	. 30	1:7:	151.3	46	37		43
10	1052	17	41	10	7.9	152,4	47	37		44
11	1054	7	44	140	1,9	1546	46)	35 35		45
12	1056	٠ يا مس	47	: 75	160	155.3	49	3		45
13	CNICO	7_	30	1.0	-2.1	1568	43	38		41_
14	160-	1/2	-35)	.५०	1.7	158,2	-47	38		43
15	464_	_£;	40	()0	1.9	15 /	48	38		43
16	1100	10	41	,35	1.8	161.0	<u>(30</u>	37		ナナ
17_	1104	_ <u></u>	43_	.55	1.5	16.2.4	50	39	}	43
18_	j110	6	45	185	63	1638	51	39 39	{	43
19	1112	_3_	40	1.3	27	11650	45		<i>_</i> /	46
20	1115	-3	40	1,3	2.7	16/11/	49	39	<u> /</u>	43
21	111.03	3	42	1, 4	اما ، 7	1500	- 51 -	3)		43
	1120	4	43	11	2.3	1706	_51	40		43
23	1122	3	45	_h_		172,2	57	40	{	43
24	1124		47	1.0	71	1211	7,4	40		
	~ ~ ~				100	150	16	40		40
26	1130	<u> </u>	_35	<u>, 30</u>	1/2	176.3	<u> </u>	<u> 10 </u>	}	41
	1132	<u> </u>	31	35	157	177.8	49	40	- / 	41
2.3	1134	(,,	서方	, 45	1.8	171/2	51	40		41
251	1136	<u>_</u>	42	<u> </u>	111	150.6	<u> </u>	40	_ \	41
ψ	1138	<u> </u>	42	. 35	1.5	147,6	Śij	40		41

Facility Dock
Location Herry mem Mo
Operator TU
Date 12/2/02
Run No. Z
Sample Box No. Presc
Meter Box No. Arco
Meter Δ H. 1.5
C Factor I.C.,
Pitot Coeff (C _o) V. YV

#7Bajuse

Diameter (in.) ______

Downstream (in.) _____

Upstream (in.) _____

Ambient Temp 35

Barometric Pressure 201. 8

Diameter 0. 11

Leak Rate (cfm) 0 0 0 15

Static Pressure 42 - 10.0 "H20

Filter No. 1943

Impinger Vol. (initial) 200

Impinger Vol. (final) 70

Silica Gel Wt. (final) 410

Silica Gel Wt. (final) 410

			Initial !	Meter Rea	ding:	52,209				
Traverse	Sample	Sample	Stack	ΔP	ΔΉ	Gas	DGM	DGM	Filter	Last
Point No.	Time (min.)	Vacuum (in. Hg)	Temp. (°F)	in. H₂O	in. H ₂ O	Volume (ft³)	Temp.	Temp.	Temp. (°F)	lmpinger (°F)
1	nn/n	Ý	40	1.3	2,7	184,0	37	37	1	36.
2	1626	7	40	1.1	2.3	185.5	37	37		38
3	mx	Ŝ	91	1.1	2.3	187,2	<i>3</i> %	37		41
4	1220	প্ত	ul	1.1	2.3	158.9	41	37		41
.5	1732	9	45	1.3	2.7	190.6	42	37		42
6	1234	<u> </u>	48	1.1	2.3	172.1	43	37	\Box	42
7 :	1236	-8	43	10	12.1	193.7	41	37		40
8/	1Wo-	8.	43	1.0	2.1.	-195.2	44	37		42
9	124/2	9	44	4.1	2.3	96.3	14	الإ		42
10	1244	~,	44	11	2.3	1990	ไปว์	ŽÝ		42
11	1246	9	\ . 7	1.1	2,3	200.1	44	38		42
12	1248	8	Ţ	14	23	201.7	49	38		ر الر
13	127/52	8	J	.80	13	203.0	υŻ	38		4
14	1754	Ğ	4	.70	1.5	204.5	40	201		ui.
15	1256	3	J	,75	1.5	205.6	47	35		41
16	1158	9	42	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1,3	207,2	48	39		41
17	1300	4	ÚÝ	385	LX	.208.7	49	39		Ţ
18	1302	9	48	. 35	(1)	210,5	50	39		41
19	13436	6	44	.65	1.4	211/8	43	39		39
20	13.3	Ď.	44	15	1.4	213.0	46	34		41
21	130	اسا	46	<u> </u>	1.5	214.3	50_	40		41
22	132	7	41	<u> 70</u>	1:5	215,7	49	39		42
23	134	6	46.	.75	1.60	715.4	49	40		42
24	1316	See	Yr.	,75	ا.ل	2175	49	UO		42
125	313 (34)	7	40	.50	للذ	218.7	43	31		40
26	1322	7	41	70	1.5	220.0	47	40		स्स
77	1324	7	41	,65	1.4	221,2	49	40		14
25	1326	1	43	,70	1.5	-222.4	50	9	•	42
29	1324	6	UI	.75	(60	223,7	51	ŲΟ		42
20	1330	1	J.	.75	1.6	252.0	51	40		42

N 2
Facility VOL INN
Location He williams my Mes
Operator_TC
Date 12 3 52
Run No. 3
Sample Box No. APEX
Meter Box No. APEX
Meter A H. 19
C Factor 1.5
Pitot Coeff (C.)

#7 Bayhorse

Diameter (in.)______
Downstream (in.)_____
Upstream (in.)_____

35
Ambient Temp
Barometric Pressure 2.9.
Diameter 3.21
Leak Rate (cfm) からとう" はっ
Static Pressure - 10 "14 20
Filter No. 1942
Impinger Vol. (initial) Zoc
Impinger Vol. (final) 205
Silica Gel Wt. (initial) 116
Silica Gel Wt. (final) 4th 420

Initial Meter Reading: 225. 782

Traverse Sample				mai	Meter Rea	umg. <u> </u>	<u> </u>	<u> </u>			
No. (min) (in. Hg) (in. Hg) (in. Hg) (in. Hg) (in. Hg) (if) IN OUT (FF) (FF) (FF) 1 NV (Mg) 7 38 7 38 7 38 7 38 7 38 7 38 7 38 7 3					ΔΡ	ΔH					
1					in H.O	in H-O			Temp.		Impinger
2 190 3 3 3 10 2.1 7288 37 35 35 36 36 4 1954 57 42 1.2 2.6 230.3 40 35 38 4 1954 57 42 1.2 2.6 230.3 40 35 38 51 56 1956 57 44 1.1 2.6 233.6 42 35 35 35 35 35 35 35 35 35 35 35 35 35			(1117)						27	1	
3			7				7233		2 0	 	
4 14 54 57 42 1,2 2,6 252.6 42 35 36 36 14 65 10 49 1,2 2,6 253.6 42 35 36 39 6 14 6 10 49 1,2 2,6 25,2 43 36 39 7 19 50 9 47 1,2 2,6 2,1 236.8 51 36 37 38 10 150 9 47 1,2 2,6 2,1 3,2 4,4 43 36 36 11 150 3 46 1,1 2,3 243.4 48 37 38 12 151 3 48 1,1 2,3 243.4 48 37 38 12 151 3 48 1,1 2,3 243.4 48 37 38 12 151 3 48 1,1 2,3 243.4 48 37 38 13 14 151 3 48 1,1 2,3 243.4 48 37 38 13 14 151 3 48 1,1 2,3 245.0 48 3.7 38 13 14 151 3 48 1,1 2,3 245.0 48 3.7 38 13 14 151 3 48 1,1 2,3 245.0 48 3.7 38 13 14 151 3 48 1,1 2,3 245.0 48 3.7 37 15 15 151 4 151									35	1	
5			67			7.6			35	 	
6	5	 	5	' , -		2.6	233.6	42	35	 	29
8 1504 88 42 LE 21 2264 43 36 38 38 10 1506 9 47 1.2 2.6 240.0 43 36 38 38 10 1508 9 44 1.7 2.6 241.3 47 3. 38 38 11 150 8 46 1.1 2.3 243.4 46 37 38 12 150 3 48 1.1 2.3 243.4 46 37 38 13 1540 6 11 30 1.7 246.4 42 37 38 13 1540 6 11 30 1.7 246.4 42 37 37 38 13 1540 6 11 30 1.7 246.4 42 37 37 15 16 150 6 16 17 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16	6	1 7	10			 	235.2	43			39
8 1504 88 42 LE 21 2264 43 36 38 38 10 1506 9 47 1.2 2.6 240.0 43 36 38 38 10 1508 9 44 1.7 2.6 241.3 47 3. 38 38 11 150 8 46 1.1 2.3 243.4 46 37 38 12 150 3 48 1.1 2.3 243.4 46 37 38 13 1540 6 11 30 1.7 246.4 42 37 38 13 1540 6 11 30 1.7 246.4 42 37 37 38 13 1540 6 11 30 1.7 246.4 42 37 37 15 16 150 6 16 17 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16	7	1600			1.0	2.1	236.5	39	3.		3.7
9 1506 9 47 1.2 2.6 240.0 43 36 38 10 1508 9 44 1.2 2.6 241.3 47 3. 38 11 150 8 46 1.1 2.3 243.4 48 37 38 12 1511 8 48 1.1 2.3 245.0 48 37 38 13 1540 6 41 180 1.7 246.4 42 37 37 14 1518 6 28 .80 1.7 246.4 42 37 37 15 15 15 6 28 .80 1.7 240.4 42 37 37 16 1526 6 40 185 1.8 250.6 48 38 27 17 1524 6 43 155 18 253.3 47 38 37 18 1526 6 48 185 18 253.3 47 38 37 19 15286 5 40 160 1.3 258.8 46 38 37 20 1532 5 37 60 1.3 2588 46 38 37 21 154 5 38 .65 1.4 257.1 47 38 37 22 156 6 41 85 1.8 258.5 48 38 37 23 1535 6 45 1.8 258.5 48 38 37 24 1540 6 41 85 1.8 258.5 48 38 37 25 154 7 41 1.0 211 262.7 43 38 37 26 1540 6 37 155 16 264.1 47 38 37 27 1548 5 37 155 16 264.1 47 38 37 28 1540 6 37 155 16 264.1 47 38 37 29 1545 5 37 165 1.8 258.5 48 38 30 20 1545 5 37 155 16 264.1 47 38 37 24 1540 6 37 155 16 264.1 47 38 37 25 1540 5 38 165 14 265.2 43 37 31 21 1548 5 37 155 16 264.1 47 38 37 21 1548 5 37 155 16 264.1 47 38 37 23 1550 5 38 165 14 265.2 43 37 31	8	r · · · · ·	884	42	1.2	2,0	228,4	.43			361 4
11 150 8 46 1.1 2.3 243.4 48 37 38 12 1512 3 48 1.1 2.3 245.0 48 3.7 38 13 1540 6 11 130 1.7 246.4 42 37 37 14 1518 6 38 .30 1.7 246.4 42 37 37 15 15 15 6 6 38 .75 1.6 241.2 47 38 37 16 1522 6 40 185 1.8 258.3 41 38 37 18 1526 6 48 185 18 253.3 41 38 37 19 15286 5 40 .60 1.3 254.5 42 38 36 20 1532 5 38 60 1.3 255.8 46 38 36 21 154 5 38 .68 1.4 257.1 47 38 37 22 132 6 41 85 1.8 258.5 48 38 37 23 1535 6 45 85 1.8 258.5 48 38 37 24 1540 6 49 85 1.8 258.5 48 38 37 24 1540 6 49 85 1.8 258.5 48 38 37 24 1540 6 49 85 1.8 258.5 48 38 37 24 1540 6 49 85 1.8 258.5 48 38 37 24 1540 6 49 85 1.8 258.5 48 38 37 24 1540 6 49 85 1.8 258.5 48 38 37 24 1540 6 49 85 1.8 258.5 48 38 37 24 1540 6 49 85 1.8 258.5 48 38 37 25 1580 5 38 165 1.4 265.2 43 39 36 26 1580 5 38 165 1.4 265.2 43 39 36 27 1548 5 37 165 1.4 265.2 43 39 36 28 1580 5 38 165 1.4 265.2 48 39 37 29 1552 5 43 75 1.6 267.8 49 39 31	9		ণ	42	1.2	26	240.0	43	36		33
11	10	1508	(J_	44	1.2	2.6	2-11-3	47	3		35
13 15 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 2 1 3 7 1 3 7 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	11	1510	ৰ্	46	1.1	2.3	243.4	48	37		38
14	12		3	48	1.1	2.3	2450	43	317	_ \	35
15	13	151750	40	1	33	1.7	246.4	42	37	•	37
16 :52	14	1518		2%	, 30	1.7		45	37		37
16 :52	15	,520	£	33	.75	1:6	4	47	350	-	37
18 1526 6 48 35 13 253.3 41 38 37 19 15281 5 40 60 1.3 2558 46 38 36 20 1536 5 38 60 1.3 2558 46 38 36 21 1536 5 38 65 1.4 257.1 47 38 37 22 1536 6 41 85 1.8 2585 48 38 37 23 1535 6 45 1.8 258.8 47 38 37 24 1540 6 48 18 18 258.8 47 38 37 24 1540 6 48 18 18 258.8 47 38 37 24 1540 6 48 18 18 2611 69 38 37 25 154 7 41 1.0 2.1 262.7 43 38 86 26 1540 6 364.1 47 38 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37	16	:522	12	40	135	٧ <u>٨</u>	2560-5	45	33	4	37
19	17	1524	ico _	43		1.5	251.7		<u>ځځ</u>	37	
20 1532 5 35 60 1.3 2558 46 35 36 21 1534 5 38 .65 1.4 257.1 47 38 37 22 1536 6 41 .85 1.8 258.5 48 3.8 37 23 1535 6 45 .65 1.8 258.8 47 38 37 24 1540 6 48 .85 1.8 261.1 49 38 37 25 1544 7 41 1.0 2.1 262.7 43 38 36 26 1546 6 37 .75 1.6 264.1 47 38 37 27 1548 5 37 .65 1.4 265.2 43 37 36 28 1586 5 38 .65 1.4 265.2 43 37 36 29 1556 5 43 .75 1.6 267.8 49 39 31	18			48	. 35		253.3		_		Į
20 1532 5 37 165 14 265.2 43 37 32 21 1545 5 33 17 24 1545 5 33 165 14 265.2 43 39 37 24 1545 5 37 15 16 264.1 47 38 37 25 15 15 5 37 15 16 264.1 47 38 37 25 15 15 15 15 15 15 15 15 15 15 15 15 15	19	1528/2			.60	1.3	254.5	42		36,	1
22 136 6 41 85 1.8 258.5 48 38 37 23 1535 6 45 585 1.8 259.8 49 38 37 24 1540 6 48 185 1.8 261.1 49 38 37 25 1544 7 41 1.0 2.1 262.7 43 38 36 26 1546 6 37 155 1.6 264.1 47 38 37 21 1548 5 37 165 14 265.2 43 39 36 23 1556 5 38 165 1.4 266.5 45 39 37 24 1556 5 43 155 1.4 266.5 45 39 37		1532	5	_; 3 %\	60	1.3	255/3	46	35		
23 1535 6 45 18 259.8 49 38 37 24 1540 6 48 185 1.8 261.1 49 38 37 25 154 7 41 1.0 2.1 262.7 43 38 86 26 1546 6 37 15 16 264.1 47 38 37 21 1548 5 37 165 14 265.2 43 39 36 25 1536 5 38 165 14 265.2 45 39 37 24 1556 5 43 155 14 266.5 45 39 37			5		165		257.1	47			
24 1540 6 48 185 1.8 261.1 49 38 37 25 1544 7 41 1.0 2.1 262.7 43 38 86 26 1546 6 37 75 16 264.1 47 38 37 27 1548 5 37 165 14 265.2 43 39 31 28 1556 5 38 165 1.4 266.5 45 39 37 28 1556 5 43 75 1.6 267.8 49 39 31		1536				1.8	25815				
25 554 7 41 1.0 2.1 262.7 43 38 36 20 1546 6 37 .75 1.6 264.1 47 38 37 21 25 15 15 15 15 265.2 43 39 36 25 155 155 5 38 .65 1.4 266.5 45 39 37 21 25 552 5 43 .75 1.6 267.8 49 39 31	23		6.		155		255.8		<u>38</u> 3	2,	
25 554 7 41 1.0 2.1 262.7 43 38 36 20 1546 6 37 .75 1.6 264.1 47 38 37 21 25 15 15 15 15 265.2 43 39 36 25 155 155 5 38 .65 1.4 266.5 45 39 37 21 25 552 5 43 .75 1.6 267.8 49 39 31		1540		48	135	1, 8	2611	ug	38	<u> 32</u>	
27 1548 5 37 165 14 265.2 43 39 30 25 1530 5 38 165 1.4 266.5 48 39 37 21 1552 5 43 275 1.6 267.8 49 39 31	75	1545 77	7	41	1.0	211	262.7		38	3 6	
25 1530 5 38 165 1.4 266.5 45 39 37 21 552 5 43 275 1.6 267.8 49 39 31	26	1546	6	37	35	16	2641	<i>i /</i>	38	<u>37</u>	
31 552 5 43 75 16 267.8 49 39 30	21	1545	5	37		1.4	265.2	43	ر ا	'કો.	
31 552 5 43 75 16 267.8 49 39 30	25	,530	جَ		165	1.4	266.5	45	39	37	
30 1554 5 47 125 1.6 201 49 34 31			<u> 5_</u>]	43	275	1,60	767.8	49			
	30	1554	5	47	. 75	1.60	2691	4	30	31.	

Facility Doe Ran
Location Herouleneum, Mo
Operator TZ
Date 12 15/0 2
Run No.
Sample Box No. APE ×
Meter Box No. APEV
Meter Δ H, $\frac{1}{2}$
C Factor 1.0
Pitot Coeff (Cp) O. & Y

# 8	B.on	لمبايو

Diameter (in.)

Downstream (in.)

Upstream (in.)

Ambient Temp 35
Barometric Pressure 30.
Diameter o. 29
Leak Rate (cfm) O . O (0' 14)
Static Pressure 40, 2"Hz &
Filter No. <u>3005</u>
Impinger Vol. (initial) Zoo
Impinger Vol. (final) 20 \
Silica Gel Wt. (initial) 494
Silica Gel Wt. (final)

Initial Meter Reading: Traverse Sample Sample Stack

				_	ricici rica	والمستنقيح					
	Traverse	Sample	Sample	Stack	ΔP	ΔH	Gas	DGM	DGM	Filter	Last
	Point	Time	Vacuum	Temp.	.		Volume	Temp.	Temp.	Temp.	Impinger
	No.	(min.)	(in. Hg)	(°F)	ín. H₂O	in. H ₂ O	(U ₃)	IN	our	(°F)	(°F)
	1	16:1 5/29 .5	7	51	رآم	1.5	397.8	37	35	1./	42
	2	1626)	53		1:3	399.2	-38	35	1_/	43
	3	1022.5	3	54	.15	1.2	400,6	41	35	<u> </u>	44
	-4	1025	3	51	.15	1.2	402.3	43	<u>څلی</u>	<u> </u>	43
	_5	1527.5	3	5)	.15	1.2	40307	45	36	<u> </u>	43
	√6	/०३०	ربلاس	51	.113	1.0	4049	46	37		42
-	i Noris	1032.5	3	52	.13	1,0	4002	47	3)	1	41
1	7(,8)	1035	3	54	13	1.0	406.5	Ý8	37		41
	7 19.	1037.5	3	56	113	1,0	4080	48	38		40
	10	/c40	3-5-	5.	115	1,2	410.3	50	34		39
٦	111	1042.5	5_	57	,21	1.10	412.0	51_	39	3	40
أر	112。彩	1045	5	57	• 71	1.12	413.7	52	31	<u> </u>	40
	\$13	10+735	4_	52	19	1.5	11514	45	39	$\Delta =$	38
P	-14	1052.5	5	50	.21	طدا	417,0	50	રુવ	3 4	38
1	15	1055	L-	50	117	1.3	418.4	5	39'		39
i	16	10575	3	50	115	11.2	420.0	5	39		38
	17	1100	3	.51	_13	1.0	4212	5	yo.		38
ı	18	1102.5	3	-51	13	1.0	4226	51	40] .	_37
	19	1105	4	53	115	1.2"	424,0	51_	40		37
	20	1107.5	14	50	\mathcal{A}	1.5	425.2	<u>-5</u> L-	40		37
	21	טווו	5_	54	25	1.9	427.7	_51_	40		37
ľ	22	112.5	4_	53	33	2.5	429.6	<1	40		
	23	1115	4	5Z	125	19	431.3	51	40		37
	24	1117-5	5	50	35	2.7	4336	5(40		37
						,					
ľ											
Ī						1					
ł		1									
Ì	· - · ·										
ł		 							1		
L		_									

Facility Dre Pun
Location Hamiltonia
Operator 17
Date 17 5 0
Run No. 2
Sample Box No. APEX
Meter Box No. ACEX
Meter & H. 1.9
C Factor 1.0
Pitot Coeff (C) O. 44

મક	Baybouse	
----	----------	--

Diameter (in.)

Downstream (in.)

Upstream (in.)

Ambient Temp 35
Barometric Pressure 30.
Diameter 0.29
Leak Rate (cfm)
Static Pressure to 24in H2D
Filter No. 3000
Impinger Vol. (initial) 700
Impinger Vol. (final) 201
Silica Gel Wt. (initial) 487
Silica Gel Wt. (final) 441

Initial Meter Reading: <u>433.928</u>

				Initial N	Aeter Read	ding: <u> </u>	33.16	<u> </u>			
	Traverse	Sample	Sample	Stack	ΔP	ΔH		DGM	DGM	Filter	Last
	Point	Time	Vacuum	Temp.			Volume	Temp.	Temp.	Temp.	Impinger
	No.	(min.)	(in. Hg)	(°F)	in. H ₂ O	in. H ₂ O	((તિ)	<u>NI</u>	OUT	(°F)	(°F)
	1	1150/25.	4	48	_13_	1.0	435,2	37	37		35.
	2	1455	4	51	_15_	1.2	436.7	39	37	ľ	3 9
	3	1457.5	Ÿ	53	.13	1.0	438.1	42	37		40
	4	not	4	53	113	1.0	439.4	44	37		41.
	5	nort	4	54	.15	1.2	441,0	45	37		41
	6	1205	4	55	.15	1.2	442.3	47	37		41
	17 W	1207,5	1	56	15	1.2	443.9	નવ	3x		41
	2: 8: 1	1210	5	57	,23	1.8	445%	49	38	•	41
١.,	19	コルバ	16.	53	.27	2.1.	447.6	51	38		41
) ji Dan	10.1	צני) las	60	.25	1.4	145	51.	70		-40 M
- ->		Jun?	6	62	3/	2.4	451.4	52	39	47	39
. •	12/1	านง	دعا	60	.35	25	453.6	52	39	1	રંવ
	13	1231/3,5	4	62	17	1.3	4550	44	38		40
	14	1226	4	67	in	1,3	446	4	40	≥ \ **	40
	15	1228.5	4	59	115	1.2	453,4	5	ر ئ	. 5	UN
	16	1231	4	57	15	12	4598	51	40		a Pin
	17_	12335	4	_ Ś Ź	15	1.2.	461.0	52	O		42
	18	1736	4	57	15	1.2	4623	52	40		42
3	19	1235	ij	57	.13	١٠٥	Je 3.4	52	0	1 -	43
	20	1241	4	57	.13	1.0:	4657	57	412		44.73
ſ	21_	1243.5	4	57	.19	15	UG DE	152	4	1.5	43,
ľ	22	1246	4	57	da	153	468.4	×47	(1) [E.]	116	3443g
Í	23	1248.5	7	57	.19	1.5	1400 cl	-5 Z*	418		44
Ī	24	125	4	57	119	7.5	4716	52	WW.	£ 16.60	44
j			-	7-1				T.		>	A STATE OF
ı							• · · ·	Pr		35	
ı						7.,			*		· ·
ı	<u>-</u>					· -	7			E Vig	
İ		-								7	
l							···•			1	
_ 1										7	

Facility Doe Pun
Location Herzulmeum, Mb
Operator
Date 1215 62
Run No. 3
Sample Box No. APEX
Meter Box No. APEX
Meter A H. 1.9
C Factor 1.0
Pirot Coaff (C) 12 20

#8 Baylosse

Diameter (in.)	_
Downstream (in.)	
Unstream (in.)	

Ambient Temp 35
Barometric Pressure 30.1
Diameter 6.29
Leak Rate (cfm) 2 (2 16" 14
Static Pressure +0 -2 7" 1-h2-
Filter No. 300 2
Impinger Vol. (initial) 200
Impinger Vol. (final) 202
Silica Gel Wt. (initial) 454
Silica Gel Wt. (final) 456

				Initial N	∕Ieter Rea	dine. L	11185	· Z_			
ı	Traverse	Sample	Sample	Stack	ΔΡ	ΔH	Gas	DGM	DGM	Filter	Last
ı	Point #	Time (min.)	Vacuum	Temp.	11.0	- 11.0	Volume (ft³)	Temp. IN	Temp. QUT	Temp.	Impinger (°F)
ł			(in. Hg)	(°F)	in. H ₂ O	in. H ₂ O	473.3	36		(°F)	
١	<u> </u>	19520/2.5	4	49	1	1.3			36	 	39
1	2	1954		48	:15	1.2	474.8	3	يعلق	 	37
ł	3	357.5	<u> 4</u>	47	15	1.2	476. 3	40	34.	 	40
ŀ	4	1400	4	43	गर्टे	1.2	4778	42	1 2t	- \	39
ļ	5 -	14025	4	पुत्र	15	1.2	479,3	43	36		30
ŀ	<u> </u>	1475		35	15	1.6	4803	45	36	 	39 38
ļ		14075	<u> </u>	51	19	11.5	482.3	46	3i.	- \ -	38
1	8	1410	-넥	54	117	1.3	483.7	46	37		38
	9.1	14125	-4-	56	47	1.3	485.3	47	37		38
	10 /	1415	5	57	_17_	1.3	486.6	77	37	-	38 38
I	11.55	14175	5	53	121	طنا	488.5	47	37		38
l	12	1920	5	<u> 58 _</u>	·21	رج) را	4901	48	38		38
ı	13	1423	5_	50_	413	100	4965	43	38		40
ı	14	1426	5_	55	.15	1.2	42.7	44	38		41
L	15	1428.5	<u>Š</u>	44	415	1.2	494.2	46	37		39
Į	16	1431	4	5¥]	.15	1,2	496.0	47	37		<u> 38</u>
L	17	1453.5	<u> </u>	55	15	1.2	497.2	48	38		37
L	18	1436	حا	54	47	1/3	MARIL	५४	28		_37
L	19	14385	5	52	47	1.3	500,2	48	38		37
E	20	1441	5	52	+23	13	50.9	¥ ሄ	28		37
Γ	21	1443.5	5	Şυ	,25	1,9	503.8	48	38		37
ſ	22	1446	5	50	.25	1,9	55.7	48	38		37
ľ	23	1448.5	5	51	.25	1.9	507 A	48	38		37
Γ	24	1451	5	50	31	24	501.4	48	38		37
ľ					1.5		·	- 		_/_/	
r					·. <u></u>						
r			- - -								-
r											
r											
r						<u></u> i					
L				<u> </u>		1	. <u></u>	!	[

Final Meter Reading:

77 4, 102

Facility Doe Ru
Location Herculson, Mo
Operator TC
Date 12/4/02
Run No. 1
Sample Box No. APEX
Meter Box No. APEX
Meter Δ H _a 1.9
C Factor 1.0
Pitor Coeff (C) & &U

#9 Baylovse

Diameter (in.)	
Downstream (in.)	_
Upstream (in.)	

Ambient Temp 3-0
Barometric Pressure 30.2 (39.26)
Diameter 0.21
Leak Rate (cfm) 0,0 @ 20" the
Static Pressure - 10 "Har O
Filter No. <u>1931</u>
Impinger Vol. (initial) 200
Impinger Vol. (final) 203
Silica Gel Wt. (initial) 430
Silica Gel Wt. (final) 424

			Initial i	Meter Rea	ding:	<u> </u>				
Traverse	Sample	Sample	Stack	ΔP	AH	Gas	DGM	DGM	Filter	Last
Point No.	Time (min.)	Vacuum (in. Hg)	Temp.	in. H ₂ O	in. H ₂ O	Volume (ft ³)	Temp.	Temp.	Temp. (°F)	Impinger (°F)
_1	148/14	6	2.1	185	1.3	270.8	35	35	1	2)
2	ر کیگری	(0)	30	ED	1.3	2721	34,	35	7	29
3	954	5	32	55	1,2	2732	38	35	1	30
4	956	6	36	,70	1,5	274.4	39	35		30
5	958	7	40	90	1.7	275.6	41	35		31
6	(303)	-1	47	,85	1.8	2771	42	35	-	30
7	1002	5	36	.80	6.7	278.5	39	36		30
.8	ملان	5	33.	165	1,4_	279.7	42	36		31
9	LOUK	35	34	175	116	281.1	43	36		31
10	1010	5	38	.85	1.8	282,4	45	36		31
11	1012	5	41	85	1.8	283.9	46	ろう		32
12	1014	5_	48	1.0	2.1	2.85.4	47	37		ر الا
13	1018	6	38	165	64	28/01/6	43	37		3€0
14	1020	()	35	,75	٥	288:0	45	37		31
15	1022	الد ا	37	175	ما .[289.3	47	38		32.
16	1024	7	40	,85	1.8	290.7	47	37		31
17	1026	8_	44	1.0	2 1	2923	47	38		32
18	1028	9	48	1,2	2.6	293.9	48	38		37
19	1032	b	37	20	1.5	295.3	91	39		30
20	1034	7_	34	185	1,8	296.6	45	_38	=	3!
21	1036	7	35	, 45	1.8	298,2	7	38		32
22	1038	8	39_	,40	1.9	299.6	7	38	T	32
23	1040	B	43	1.0	5.1	301.0	49	39	T	<u> 32.</u>
24	1042	ου (46	0.7	7.1	302.5	49	39		32
25	1044/46	7	38	. 30	1/2	303.8	43	40	$-\mathcal{I}$	31_
26	1048	ا ا	33	.75	l, b_	305-1	47	40		32
27	1050	7_	33	.80	1.7	306.7	47	39		31
28	1052	8	39	.90	19	307.9	49	4 D		32
29	1054	8	44	1.0	7.1	309.5	49	39		37
30	1050	8	43	1.0	21	311.0	49	39		32

Final Meter Reading:

311.061

Facility Hercul meun, no
Location Doe Ron
Operator_TC
Date 17 402
Run No. 2
Sample Box No. APEX
Meter Box No. AREX
Meter Δ H ₈ 1.5
C Factor 1.0
Pitot Coeff (C) b . 84

49Bagharse

Diameter (in.)

Downstream (in.)

Upstream (in.)

Ambient Temp 30
Barometric Pressure 30.2
Diameter 0.21
Leak Rate (cfm) 0.0 @ 20"Hay
Static Pressure _ to "H=0
Filter No. 2003
Impinger Vol. (initial) 230
Impinger Vol. (final) 204
Silica Gel Wt. (initial) 434
Silica Gel Wt. (final) 437

237/39

				Initial N	Meter Rea	ding: 🥳	edema c	1 22 3 6	8 313	6.657	
ſ	Traverse	Sample	Sample	Stack	ΔP	Ĝri	Gas	DGM	DGM	Filter	Last
1	Point No.	Time (min.)	Vacuum (in. Hg)	Temp. (°F)	in. H₂O	in, H ₂ O	Volume (ft ³)	Temp.	Temp,	Temp. (°F)	Impinger (°F)
۱	1	W-32/44	7	27	185	L 8	3150	26	27	7	23
ľ	2	1241	8	26	75	1.6	311-4	77	26		21
t	3	1243	9	28	-85	1.8	317.8	30_	26		25
ľ	4	1245	9	32.	-85	1.8	319.1	31	2.7		25
ſ	5	1247	10	37	1,0	2.1	3/06	34	28	7	26
Ţ	6	1249	10	u ₀	10	2.1	322.1	35	2.8		27
Ī	7	1251/53	10	33	1,1	2.3	323.7	33	29		27
Ţ	8	1255	9	32	.85	1.8	325.2	36	29	1	27_
	9	1257	8	32	175	طرا	326.5	39	31		25
Ĺ	10	1259	8.	اعترا	75	1.6	327.7	40	31		29
	11	1301	8	39	86	1.7	329.0	(4)	22_		291
	12	1303	8	43	- 80	ルゔニ	320.4	41_	30		29
	13	1305 (307)	જ	3(80	1.7	332.3	38_	32		29
I	14	1309	8	31	.75	1.6	333,6	42	32		2 <u>9</u>
	15	1311	7	32	165	1.4	224.9	42	32		29
I	16	1313	8	35	.75	1.4	336.2	42	32		29
I	17	1315	0	42	190	1.9	3306	44	33		29
L	18	1317	10	45	Ò	5	339.0	45	34		29
L	19	1319 321	ĺυ	39],0	2.1	340.7	38	34	T	29
L	20	1323	8	36	20	65	341.9	43	34	-	30
L	21	1325	-8	35	.70	1.5	242.2	44	34		30
L	22	1327	8	37	75	[.6	3445	44	34	_71	30
Ĺ	23	1329	9	43	190	19	345,9	45	34		30
	24	1331	10	46	1.0	21	347.4	46	35	1	30
E	25	1333/25	9	3/2	-9 C	٦٠٩	249.1	UÓ	37		30
	26	1337	8	432 33	.70	1. <	350.3	42	20	1	30
	27	1339	2	34	160	1.3	351.5	42	35	7	
	28	1341	7	35	,60	1,2	3526	43	35		30 30
Γ	29	1343	8	44	,70	1.5	353.8	45	35		30
Г	30	1345	e	498	-70	1.5	35571	40	35	- - 	30

Facility Doe Kun
Location Hercoloneum Mo
Operator TZ
Date 12/4/02
Run No. 2
Sample Box No. APEX
Meter Box No. APEX
Meter Δ H _a 1.9
C Factor 1.0
Pitot Coeff (Co) 0.84

#9 Bayhouse

Diameter (in.) ______
Downstream (in.) _____
Upstream (in.) _____

Ambient Temp 30
Barometric Pressure 30 . 2
Diameter o.21
Leak Rate (cfm) o.o e 15" Ha
Static Pressure - 10" H20
Filter No. Zoo
Impinger Vol. (initial) 200
Impinger Vol. (final) 204
Silica Gel Wt. (initial) 470
Silica Gel Wt. (final) 473

			Initial f	Meter R <u>e</u> a	ding:	355.51L	<u> </u>			_
Traverse	Sample	Sample	Stack	ΔP	ΔH	Gas	DGM	DGM	Filter	Last
Point No.	Time (min.)	Vacuum (in. Hg)	Temp.	in. H ₂ O	in. H ₂ O	Volume (ft ¹)	Temp.	Temp.	Temp. (°F)	Impinger (°F)
1	1456/58	R	28	.95	2,0	356.7	27	27	7	27
2	1506	6	29	,70	1,5	3581	79	28	7-	32
3	1502	6	31	175	1,6	359,3	30	28		34
4	1504	8	34	.90	1.9	3.0.8	33	30		35
5	1506	8.	41	1.0	2.1	362.3>	35	28_	1	35
6	1508	8	45	1.]	2.3	363.9	37	29		37
7	1510/1512	7	34	185	1/4	365.1	35	30		35
8	1514	5	34	75	يا ، ا	366.5	37	30		3
9	1516	<u>ط</u>	33	.80	1.7	367.9	39	30		36
10	1518	6_	35	190	18	3/9.3	40	30		ط3
<u>11</u>	1520	7	41	1.0	2.1	270.8	42	.37	_	<u>3</u> G.
12	1522	<u>8</u>	46	1.1	2.3	3724	43	37	<u> </u>	37
13	1527526	6	35	.86	1.7	373.8	Ż	32		3:3
14	1528	5	32	165	1.4	375,0	Ųο	32		36
15	1530	5	33	165	14	376.3	41	32_		36
16	1532	6	37	.86	1.7	377.6	42	32		36
17	1534	6	40	, 85_	1.8	379.0	44	32		3ს
18	1536	_7	43	95	20	380.5	45	33		36
19	1537	1	38	.90	1,9	3820	38	33		34
20	1542	6	33	<u> </u>	1.4	383.3	44	33		36
21	1544	6	32	.70	45	384.6	44	33		35
22	1546	Ь	<u> 36</u>	.80	17	386.0	45	34		<u> 36</u>
23	1548	ا ط	42	, 8U	67	387.4	46	34		3(_
24	155°	6	47	190	1,9	388.8	46	34]	36
25	1552-54	7_	39	10	2.1	390.5	39	34		34
26	1556	م)_	36	.70	1.5	391,8	<i>Ψ</i>	34		35
27	1558	5	37	.55	1/2	392,9	44	35		36
28	1600	7	41	165	14	393.4	45	35		36
29	1602	2	47	165	1,4	394.6	ΨS	34		3 <u>L</u>
30	1604	2	48	165	1,4	395.9	45	34		36

Appendix D - Equipment Calibrations

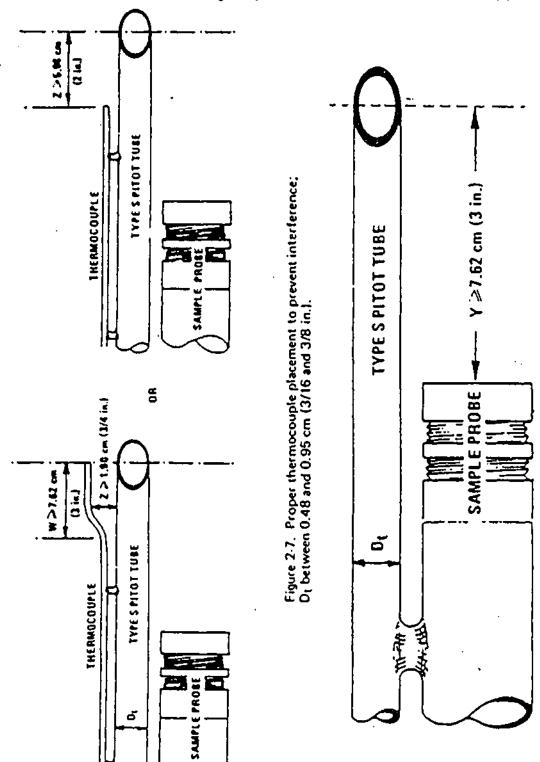
Certification Date: 1/10/2003

Pb (in.Hg): 30

Meter Box I.D: Apex

Orifice Manometer	Wet Test Meter	Dry Gas Meter	Temperatures				
Setting, dH, in.H₂0	Volume V _w , ft ³	Volume V _m , ft ³	Wet Test Meter t _w , F	DGM inlet t _i , F	DGM Outlet t _o , F	DGM Average t _m , F	Theta, min.
0.5	10.00	9.818	48.0	56.3	50.7	53.5	25.50
1.0	10.00	9.803	48.0	63.0	51.0	57.0	18.25
2.0	10.00	9.786	48.0	67.3	53.3	60.3	13.75
3.0	10.00	9.814	48.0	67.7	54.7	61.2	10.75
3.5	10.00	9.835	48.0	69.7	56.0	62.8	9.75

Orifice Manometer Setting, dH, in.H ₂ 0	Calibration Factor, Y	Orifice Pressure Differential, dH@		
0.5	1.028	1.736		
1.0	1.036	1.777		
2.0	1.042	2.009		
3.0	1.038_,	1.837		
3.5	1.038	1.758		
Average:	1.036***	1.823		
Standard Deviation	0.005	0.110		
Acceptable Value?	YES!	YES!		


^{*}Tolerances for individual Y values+/- 0.02 from average.

$$Y = \frac{V_w P_b(t_m + 460)}{V_m \left[P_b + \frac{dH}{13.6} \right] (t_w + 460)}$$

$$dH_{@} = \frac{0.0317dH}{P_{b}(t_{o} + 460)} \left[\frac{(t_{w} + 460)Theta}{V_{w}} \right]^{2}$$

٠.

^{**}Tolerances for individual dH@ values +/- 0.20 from average.

White Star Environmental Pitot Assembly Calibration Data

Pitor Assembly #: thimble filker ssembly

Figure 2-8. Minimum pitot-sample probe separation needed to prevent interference; $D_{\rm t}$ between 0.48 and 0.95 cm (3/16 and 3/8 in.).

Appendix E - Certifications

Certification

Personnel Qualifications

CERTIFICATION

White Star Environmental Consulting Corporation (WSECC) performed air quality testing at Doe Run Company located in Herculaneum, Missouri on December 3-5, 2002. Three process systems: (1) # 7 Blast Furnace Bldg. baghouse, (2) # 8 Refinery Process Kettles baghouse, and (3) the # 9 Refinery Bldg. baghouse were sampled for particulate matter and lead emissions.

Air quality testing services performed by White Star Environmental pursuant to the terms of the agreement are provided by adhering to sampling and analysis procedures as established by the Environmental Protection Agency in the Code of Federal Regulations, 40 CFR Part 60. No unapproved deviation or alternative procedure was employed during these exercises and the results are considered to be accurate and representative.

William J. Sewell, II
White Star Environmental - President

Timothy Carey
White Star Environmental - Field Supervisor

______January 15, 2003 Date

William J. Sewell, II President

Summary of Professional Experience

White Star Environmental Consulting Corporation

Position: President

Professional environmental consultant servicing industrial facilities with air pollution related projects including permitting, compliance testing, CEM systems & certifications, etc. Providing air pollution sampling and analysis expertise for industry. Responsible for technical development of Title V permit applications and QA/QC technical documents for EPA compliance on CEMS applications. (1995 – present)

Ramcon Environmental Corporation

Position: Vice President

Responsibilities include management of corporate operations providing EPA regulatory compliance services. Responsibilities include administration and management of professional staff, EPA regulatory adviser, technical writing, generation of new business opportunities, development of services division, QA/QC program & safety management program (1988 - 1995)

Education

B.S. in Chemical EngineeringChristian Brothers University, May 1986

M.S. in Engineering Management Christian Brothers University, May 1997

Accomplishments, Skills, & Affiliations

- Twelve years of air quality testing project management experience. Projects include air emission testing from boilers, incinerators, furnaces, turbines, etc.
- Member Arkansas Environmental Federation & Air Committee Member.
- Expertise in EPA Title 40 regulations.
- 1990 Clean Air Amendments (CAAA) regulatory specialist (Acid Rain Program, HAPS, Permitting).
- Development of Neural Network Predictive Emissions Monitoring Systems (PEMS) sampling and data collection protocol. Received recognition from national publications for active participation.
- Training seminar for Arkansas Dept. of Environmental Quality on compliance test observation techniques.

Timothy Ryan Carey Vice President

Summary of Professional Experience

White Star Environmental Consulting Corporation

Position: Vice President

Professional environmental consultant servicing industrial facilities with air pollution related projects including compliance testing, CEM systems & certifications, etc. Providing air pollution sampling and analysis expertise for industry. (1997 – present)

Ramcon Environmental Corporation

Position: Project Engineer

Professional environmental consultant servicing industrial facilities with air pollution related projects including compliance testing, CEM systems & certifications, etc. Providing air pollution sampling and analysis expertise for industry. (1995 - 1997)

Education

B.S. in Mechanical Engineering University of Arkansas, May 1994

Accomplishments, Skills, & Affiliations

- Seven years of air quality testing project management experience. Projects include air emission testing from boilers, incinerators, furnaces, turbines, etc.
- Fluent in EPA Title 40 regulations.
- Expertise in 40 CFR 60, Appendix A&B testing and analysis procedures.
- Participant of Predictive Emission Monitoring Systems (PEMS) development of neural networks as Alternative Monitoring Systems.

Appendix F - Related Correspondence MDNR Pre-test Protocol

PROPOSED TEST PLAN

Submitted to:

MO Dept. of Natural Resources, Air Pollution Control Program, Enforcement Section P.O. Box 176, Jefferson City, MO 65102

Date Submitted:	_		 		
Attention: Peter Yro	nwo	<u>de</u>			
Proposed Test Da	te: _	December 3-6, 2002		.	
AN) FACILITY IN	OR				
Name: Doe Run C	omp	any			
Address: : 881 M/	AIN S	ST.			· · · · · · · · · · · · · · · · · · ·
City: Herculaneu	ım		State:	МО	Zip: : 63048
Name & title of Conta	act Po	erson: Rusty Keller			
Phone No. of Contac	t Per	son: (636) 933-3097	Fax No	o.: (636) 933-3	3150
2.) AIR POLLUT	ON	SOURGE TO BETTESTED	2012	W. W. W.	
Type of Facility/Sou	urce:	Primary Lead Smelter and Re	efinery		
Permit #		FIPS/Plant ID: : 099 / 00	003	PORT#	
Address/Location:					
Address/Location:	North	on Hwy 55 Hwy to Herculane	um exit	(Next exit past	r Festus, MO
and approx. 30 mi.	Sout	th of St. Louis, MO}. Come off	the Ov	erpass and turi	n Rt. {East}. Go
second Stoplight ar	nd tu	rn left on "Old Hwy 21". Trave	el to top	of Hill and turn	Rt Travel
over the Joachim b	ridge	and make first Right. Follow	Road to	Plant.	
Reason for Test:		Condition of Permit		Consent.	Agreement
	x	Administrative Order			
		Other (specify)		··	
(A) ALESTING FIR	MIX				
Name of Firm: Whi	ite Si	tar Environmental			
Address: P.O. Box	238		·		
City Olive Branch	Zip: 38654				
Name & title of Conta	ct Pe	erson: Joe Sewell			
Phone No. of Contact	Pers	son: (662) 893-3063	Fa	x No.: (662) 8	95-1651
		Number	of emp	oyees of firm:	5
	• *	rees actually engaged in air po			4
Organizational char	t with	n names & title of personnel: (p	olease a	ttach)	

EN TESUIXE FIRM INFORMATION: (COME)	
Location & description of laboratory facilities:	
American Interplex; Little Rock, AR performing lead analysis	3
White Star Environmental performing particulate matter anal	ysis
Subcontractor(s) utilized by firm for source testing activities:	None
	·
Number of air pollution sources previously tested by firm:	1000 +
Sources tested by firm in Missouri in past 3 years (source, te	st, date): 25
Doe Run Glover, MO	
Univ. of Missouri – Columbia, MO	-

: (

4.)[ERFORMANCE TEST IN	ORMATIO	ONE SHEET		
	Pollutant	No. of Sampling Points	Total Time per Test Run	No. of Test Runs	Test Method to be Used
1.	PM/Pb – #7 Blast Furnace Bldg BH	30	60 min	3	Reference Method 12
2.	PM/Pb - #8 Refinery Process Kettles	16	60 min	3	Reference Method 12
3.	PM/Pb - #9 Refiner Bldg	30	60 min	3	Reference Method 12
4.	PM/Pb – Main Stack	8	60 min	3	Reference Method 12
5.					
6.					
7.					
8.					
9.					
10.					
11.					
12.					

5) G	ENERAL
A.	Sa	mpling Equipment Information:
		The manufacturer and model of the sampling equipment to be used by the tester for the performance tests, along with a description of any equipment which may differ from that required by the specified method(s). PM testing: Nutech Model 2010A Sampling Console
В.	Te	st Procedures:
		A description of any test procedures to be used in the conduct of the performance tests which may differ from the specified method(s).
		Due to horizontal and large ducts, tester may utilize in-stack filter.
		NOTE: Deviations from EPA test methods observed during test procedures will not necessarily be corrected by agency observer and could result in agency rejection of test results.
C.	Ana	alytical Procedures:
		A description of any analytical procedures which differ from the specified method(s). None
Đ.	Dat	ta Sheets:
		A sample of all field data sheets which do not provide the data shown on the example sheets in 40 CFR 60 for the specified method(s). (As previously submitted)
Ε.	Аіг	Pollution Control Equipment: (#7 Baghouse)
		Types and manufacturers of all control equipment: EIGHT (8) 1917 TA-SB Model 144, Series 6P, Wheelabrator Modular Jet III Continuous
		Automatic Pulse Type Dust Collectors (in an 8 X 1 arrangement) [S/N 20-4495C]
		Design or guarantee efficiency: 0.022 gr/ dry standard ft ³
		Design gas volume at full load (acfm): 300,000
		Design pressure drop: 6" W.G.

Maintenance schedule and method of record keeping: Per 1997 Missouri SIP Agreement

Air Pollution Control Equipment: (#8 Baghouse)
Types and manufacturers of all control equipment: TWO (2) 1917 TA-SB Model 144, Series 6P, Wheelabrator Modular Jet III Continuous
Automatic Pulse Type Dust Collectors (in an 2 X 1 arrangement) [S/N 20-4495A]
Design or guarantee efficiency: 0.022 gr. / Standard dry ft.3
Design gas volume at full load (acfm): 90,000
Design pressure drop: 6" W.G.
.1
Air Pollution Control Equipment: (#9 Baghouse)
Types and manufacturers of all control equipment: FIVE (5) 1917 TA-SB Model 144, Series 6P, Wheelabrator Modular Jet III Continuous
Automatic Pulse Type Dust Collectors (in an 5 X 1 arrangement) [S/N 20-4495B]
Design or guarantee efficiency:0.022 gr. / standard ft.3
Design gas volume at full load (acfm): 250,000

..

E. Air Pollution Control Equipment: (Main Stack)

(5E)

ITEM #	Process ⁽¹⁾ Name	Control Device	Gas Volume (2)	Percent of Total
1a ⁽³⁾	Sinter Machine	#3 Baghouse	300-350,000 ACFM @290°F	26.3
1b ⁽³⁾	Acid Plant	ESP; Acid Plant	55,000 AFM @ 175°F	4.8
1c(3)	Misc. transfers; Return Bin	South End Baghouse	25,000 ACFM @ ambient+5°F	2.2
Îd ⁽³⁾	Mixing Drum	Mixing Drum Baghouse	12,000 ACFM @ ambient +5°F	1.1
le ⁽³⁾	Claw Breaker; Ross Rolls; Corrugated Rolls; and Euromag	Crusher Baghouse	45,000 ACFM @ 190°F	3.9
1f (3)	Cooler	Cooler Baghouse	110,000 ACFM @ 200°F	9.6
1g ⁽³⁾	Smooth Rolls	Smooth Rolls Baghouse	15,000 ACFM @ ambient +10°F	1.3
2	Blast Furnaces	#5 Baghouse	500-550,000 ACFM @ 170°F	43.8
3	Dross Plant	Dross Furnace Baghouse	80,000 ACFM @ ambient +10°F	7
-	Main Stack Total (4)	All Sources	1,130,000 ACFM @ 190°F	100

- (1) Each Process is a portion contributing to the main stack.
- (2) Estimated flow rate based on equipment design specifications.
- (3) Equipment item numbers la thru lg are Sinter Plant related.
- (4) Actual total main stack flow is expected to be somewhat lower than the listed as dictated by the specific needs of each process.

#3 Baghouse

Manufacturer: Wheelabrator Frye

Model:

S/N: Equip. #162-300 Design efficiency: 99.5%

Design flow acfm: 300,000 - 350,000 Design Pressure Drop: 8" W.C. Normal

ESP

Manufacturer: WHEELABRATOR

Model: (1) 24/33/5X8/12" HaRDE Model 35032 S/N: Contract S/N 3559, DRC equip. #150-525

Design efficiency: 0.03GR/SDCF all fields, 0.06GR/SDCF w/1 field de-energized

Design flow acfm: 95,283 Max.

Design Pressure Drop: +/- 20 W.G. @ 550F continuous, 05" @ 600F Std. Oper.

Acid Plant Control for SO2 Manufacturer: CHEMICO

Model:

S/N: equip. # 161-XXX

Design efficiency: {Scrubbers provide additional particulate capture to ESP}

Design flow acfm: Design Pressure Drop:

South End Baghouse

Manufacturer: WHEELABRATOR

Model: #2614 RA-SB Model 120 JET III DUST COLLECTOR

S/N: 20-3260, equip. #150-610

Design efficiency: 99.5%

Design flow acfm: 24,000 @ 70F Max Temp. 300F

Design Pressure Drop: 5" W.G.

Mixing Drum Baghouse

Manufacturer: Research - Cottrell, Flex Kleen Corp. (1993)

Model: 120-WXTC-196 (III) S/N: equip. #150-176

Design efficiency: 99.5%

Design flow acfm: 12,000 Design Pressure Drop: +/-30" W.G., -15" W.G. Oper. Press. Crusher Baghouse Manufacturer: Research Cottrell, FLEX-KLEEN Corp. Model: #120-WMWC-660 (III) S/N: PO# A-794926, equip. #150-347 Design efficiency: 99.6% Design flow acfm: 40,100 Design Pressure Drop: +/- 20" W.G., 6"-8" Normal Cooler Baghouse Manufacturer: Research Cottrell, FLEX-KLEEN Corp. Model: BG89125-R2 Model#120-WXWC-1944 (III) S/N: P.O.#A-794934, equip. #150-349 Design efficiency: 99.6% Design flow acfm: 131,600 Design Pressure Drop: +/- 20" W.G., 6"-8" Normal CV22 Baghouse Manufacturer: Custom Systems Model: TD64-08 S/N: P.O.#A-201444-25T, equip. #150-349 Design efficiency: 99.5% Design flow acfm: 3,140 Design Pressure Drop: +/- 20" W.G., 3"-6" Normal 76" Smooth Rolls Baghouse Manufacturer: Micro-Pulsaire Model: S/N: equip #155-515 Design efficiency: 99.5% (0.007 gr/cf) Design flow acfm: 15,000 Design Pressure Drop: +/- 20" W.C., 6" Normal #5 Baghouse Manufacturer: Wheelabrator - Frye Inc. Model: #1624 Model #264 series 8 equip. #162-500 Design efficiency: Design flow acfm: 550,000 Design Pressure Drop: 8" W.C. Dross Furnace Baghouse Manufacturer: Amerex Model: S/N: equip.#153-440 Design efficiency: 99.7% Design flow acfm: 80,000 Design Pressure Drop: 8" W.C.

63		CONSTRUCTOR DOGESTICS STRUCTURE TO THE STRUCTURE STRUCTU
• • • •	SPECIFIC: Emission Source Process	ion being tested for air emissions, to include:
A.	Characterization of plant/equipment/procedure #7 baghouse ventilates the combined fugitives. Two blast furnaces are present to within 5 feet of the charge floor, and about are equipped with center line offtakes for the baghouse and Main Stack. The furnaces system and are ventilated by a separate D	Blast Furnace and Dross Plant building at the facility. The furnaces are water-jacketed by that, they are lined with fire-clay brick. Both heir process gas streams to a separate #5 are fed w/ coke & sinter via a shuttle conveyor ross furnace baghouse and Main Stack. portion of the building in 4-250 ton kettles that ettle boods.
C.	110 (50%Pb) Lead bearing material T/Hr/2	ughly 75%Pb = roughly 55 Lead T/Hr/2fces. fce's, 55 Lead material T/Hr/per one furnace. lace X roughly 95% Pb = 26.4 Tons Pb / Hr
D.	Normal process/production capacity: Blast Furnace = 55 tons of sinter charge / I produced / Hr/fce	Hr x 0.48%Pb = roughly 26 tons of Pb
E.	Nature and relative % of raw material input Blast Furnace = Sinter & Secondaries @ 4 Dross Plant = Molten Lead bullion @ rough	3% to 50% Lead
F.	Product(s) (with relative % if more than one From the Blast Furnaces: Molten Lead Bull From the Dross Plant kettles: Molten Deco	ion @ roughly 95% lead
G.	Type(s) of fuel: Natural Gas & Petroleum Coke vented to #5 Baghouse & Main Stack	Consumption Rate: Natural Gas: roughly 8.2 MCF/Hr Petroleum Coke: roughly 4 T/Hr/fce
Н.	Normal operating schedule: Normal operating schedule is 24 hours per	day, 7 days per week, 12 months per year.
ĵ.	Process flow diagram: (please attach):	·

6.)	SPECIFIC Emission Source Process	(Operation (#8/Baghouse)
Pro	ovide a full description of the process/operat	ion being tested for air emissions, to include:
A.	The #8 baghouse filters air from the kettle	hoods in the Refinery and the CV-10 ers. The Refinery is basically a batch process ughly 250 tons per batch before moving to
В.	Manufacturer, model & serial numbers of a Eleven 250-ton kettles CV-10 belt conveyor	ill major components:
C.	Rated process/production capacity: Refinery Kettles: 163 tons of lead bullion / CV-10 belt: 55 Sinter feed T/Hr/ fce	hour N
D.	Normal process/production capacity: Kettles at: 2.5 kettles/day, 26 Ton of lead CV-10 belt: 40.49 Lead bearing material T	
E.	Nature and relative % of raw material input Molten Lead at roughly 99% Pb	to process:
F.	Product(s) (with relative % if more than one Refined Lead metal @ 99.99% Pb.	e):
G.	Type(s) of fuel: Natural gas heated, *{On separate ventilation system}	Consumption Rate: N/A
H.	Normal operating schedule: Seven (7) days per week, 24 hours / day,	365 days / Yr
I,	Process flow diagram: (please attach):	<u> </u>

6.	SPECIFIER Emission Source Process	s/Operation (#9 Baghouse)
Pr	ovide a full description of the process/opera	ation being tested for air emissions, to include:
Α.	The #9 Baghouse ventilates the Refinery laundered into the Refining department, ventilates the Refinery laundered into the Refining department, ventilated by one gas-fired but Lead is pumped through the sequential kellead to casting machines.	building fugitives. Lead is pumped and which is equipped with eleven 250-ton kettles. rner which is on a separate ventilation system. ettle series, culminating in delivery of refined
B.	Manufacturer, model & serial numbers of	all major components:
	Eleven 250-ton kettles	
C. 	Rated process/production capacity:	/ hour
	Refinery Kettles: 163 tons of lead bullion	/ NOUI
D.	Normal process/production capacity:	
	Kettles at: 2.5 kettles/day, 26 Ton of lead	d cast/Hr
	<u></u>	
E.	Nature and relative % of raw material inpu	ut to process:
	Molten Lead at roughly 99% Pb	· · · · · · · · · · · · · · · · · · ·
F.	Product(s) (with relative % if more than or	ne):
	Refined Lead metal @ 99.99% Pb	·····
G.	Type(s) of fuel:	Consumption Rate:
	Natural gas ventilated by separate system	NA
H.	Normal operating schedule:	
	Seven (7) days per week, 24 hours / day,	365 days / Yr
I.	Process flow diagram: (please attach):	

PONSECIAL REMISSION SOURCE PROCES	S/Uperation (Wain Stack) Sign at 1996
Provide a full description of the process/opera	tion being tested for air emissions, to include:
A. Characterization of plant/equipment/proce SEE ADDITIONAL PAGES (6A)	ess:
B. Manufacturer, model & serial numbers of	all major components:
Sinter machine =McDowell-Wellman; F-S	306-H (1964)
Blast Furnaces = St. Joe Lead Co.; N.A. (1965)
C. Rated process/production capacity:	
	by 2 (returns) = roughly 135 tons of sinter / Hr
110 (50%Pb) Lead bearing material T/Hr/	oughly 75%Pb = roughly 55 Lead T/Hr/2fces. 2 fce's, 55 Lead material T/Hr/per one furnace.
D. Normal process/production capacity:	nace X roughly 95% Ph = 26.4 Tops Ph / Hr
	%Pb = roughly 43 tons of Pb in sinter / Hr
	Hr/fce X 0.48%Pb = roughly 26 tons of Pb
E. Nature and relative % of raw material input	t to process:
Sinter Plant = Main Feed Mixture @ 43%	•
Blast Furnace = Sinter & Secondaries @	43% to 50% Lead
F. Product(s) (with relative % if more than on	e):
Sinter Plant = Sinter @ 43% to 50% Lead	
Blast Furnace = Lead Bullion @ roughly 9	5% lead
G. Type(s) of fuel:	Consumption Rate:
Natural Gas & Petroleum coke	Petroleum Coke: Roughly 4 T/Hr/fce
	Natural Gas: roughly 14 MCF/Hr
H. Normal operating schedule:	
Blast Furnace normal operating schedule i months per year.	s 24 hours per day, 7 days per week, 12
Present Sinter Plant normal operating schemonths per year.	edule is 24 hours per day, 5 days per week, 12
Process flow diagram: (please attach):	

(6A)

The present normal mode of operation for the Herculaneum facility is to try to achieve maximum production through the use of one furnace operating 24 hours per day, 7 days per week, 52 weeks per year and to operate the Sinter Plant 24 hours per day, 5 days per week and 52 weeks per year. Although the throughput of individual unit processes may vary, the overall plant material throughput is relatively constant.

Exhaust air from the emission sources pass through control devices as listed in the above table before they enter the main stack. The concentration of particulate matter present in the main stack exhaust gas stream represents controlled emissions from all of the individual emission units that contribute to the main stack exhaust gas flow. Similarly, the concentration of lead and other metals in the main stack exhaust also reflects controlled emissions.

By definition, operation of the various emission units listed in the table is not continuous. Rather, it is an on-going sequence of batch-type unit operations that run repeatedly on a 24-hour per day, seven day per week basis. The only exception to this is when equipment is taken down for planned or unplanned maintenance. Due to their relatively small percentage of gas flow contributed to the total stack flow, when some of these processes are down, they have little influence on the total flow and total main stack emissions. The exception to this is when the sinter plant is down.

As shown in the table, the two exhaust gas streams that dominate the total air-flow to the main stack are from the sinter machine and the blast furnaces. These two emission units make up 70% of the total air-flow vented to the main stack. Nearly 27% of this is from the sinter machine operation and more than 44% from operation of the blast furnaces.

The 550ft. main stack is equipped with a test platform at an elevation that is 350 feet above grade. The platform, which surrounds the entire stack, consists of a 4 ft. wide walkway equipped with appropriate handrails and guarding for fall protection. Access to the test platform is via either a small electrically driven elevator or via safety ladder. There are standard 20 amp. Electrical outlets on this 350ft. level landing available for use during testing.

There are four 6-inch diameter (schedule 40) sample ports installed diametrically opposed in the stack at the platform elevation. The stack inside diameter at the elevation of the test ports is 32 feet 10 inches. The sample ports are located at a distance of 272 feet above the highest duct breaching to the stack. Based on the inside diameter of the stack at the test port elevation and the distance between the sample port elevation and the elevation of the stack breaching, the location of the sample ports are greater than 8 diameters and, therefore, meets the USEPA Method 1 specification for ideal stack base to the top, the taper is only 2.76 ft. per 100 ft. of stack height. This slight taper will not, therefore, have any significant effect on the air flow conditions within the stack.

Appendix G - Process Data

BLAST FURNACE FEED DATA SHEET DATE: 12-3-02

		BF#	si	HIFT: Days	. 1	MAN	Ē:				
		CHARGE	CHARG	E TIME		T		CHARGE	CHAR	SE TIME	
	СО	START	COKE	SINTER	N	s	ÇO	START	COKE	SINTER	NIS
	[]	:	3.08	100 150	X	31	18	J:13	2914 245	3000	X
	10	•	148 321	200 143		X 32		:	3000 234	3100 218	
	0	4 :58	292 341	300 157	H	33	2	A): 3j	3/02 327	3200 231	X
	1	5:05	374 302	400 345	Π	34	Ø	12:38	المستسب الأفران الإسرا	3300 597	V
	9	5:14	470 303	500 243	k	35	49	:	3290 213	3100 420	X
	b	5:24	544 308	600 213		× 36		·	3384 212	3500 23/	X
	0	5:42	451 3/2	700 207	Y	37	61	14:17	3478 146	3600 58	1
Į	25	5:44	752 323	P00 145	\prod	38	47	14:14	3572152	3700	Ω
	0	4:10	844 315	900 142	K	39	57	14:18	3666 148	3800 115	1
	22	4:19	<u> </u>	1000 134	H	/40	67	14:23	3780 206	3900 142	
	13	4:43		1100 201	N	41	66	14:27	8854140	400935	13
	13	4:53	1127 314	1200 219		42	52	14:30	3948 135	40 108	
ĺ	Ø	7.0	1322 314	12 A A	K	43	111	1520	404 258	4900 403	igwedge
	9	726	1316 301	1400 344	$ \rangle$	44		:	4130248	4300	Ш
	Ø	7.36	1410 314	1500 331	<u>kl</u>	45	115	15:34	4230 202	4400 239	K
	Ø	751	1504 309	1000 311		X 46	103	13:39	4324 221	4500 253	
	0	9:10	1598 307	1700 308	4	47		: '			Ш
	Ø	% :32	1492 325	1800 202		148		:			
	0	8:45	1786-428	1960-148	X	49		:			
	Ø	11:19		2000 155		50		:			
ŀ	0	4:26	1914 348	3/00 307	X	51					
	Ø	9:44	2068 236	2200 138	þ	52					
	10	10:13	2163 211	3300 133		53		;			
- [11			2400 127		54		i :			
	Ø	10:24	2350 210	2500-148	X	55		_:			
	Ø	11:13		2600 216	M	56					
	Ø	11.20	8538 324	700		57		<i>2</i> 25. •			\coprod
			2000	2700 35	1	58					
		11:59	2724 245	2800 138	X	59					$\perp \downarrow \downarrow$
	26	12:06	3820 257	2900-201	X	60		:			

Nocument #: FORM DQP152-021-A, Revision #: NONE; EffectiveDate: 09/30/97

BLAST FURNACE FEED DATA SHEET DATE: 12-3-02

BF# / SHIFT: Days NAME: 5 Advance

		CHARGE	CHAR	SE TIME	T				CHARGE	CHAR	SE TIME	
	co	START	COKE	SINTER	N	s		ÇO	START	COKE	SINTER	N
	X	:	1288		X		31		:			
: [Ø	9:58	1508			A	32		•			
	Ø	10:07	iv18		χ		33					
	Ø	10:31	1780		χ	L	34		:			
	Ø	10:35	18.38	100 152		X	35		•			
	تصفر	10 44		300 228	X	M	36		:			
	ø	10:49	1948	300 222	Χ		37		:			
	Ø	10:54	2058	400 141	X	щ	38		:			
	a	11:01	2168	500 131		X	39		::			
Į			3278	600 151		Ŋ.	40		:			
		:	1443	1100	1		41		:			
		1:54	1773 229	1200 404			42		:			
		14:04	1883	1300 146		K.	43		•			
	97	14:51	1993	1400 329	M].	44		<u>:</u>			
	57	14:50	20.52	1300 337	N	1	45		<u>:</u>			1
	9	15:10	2213	1000 320	Ц	揧	46					\downarrow
		:			\coprod		47		<u>:</u>			_
		::				1	48		:			$\frac{1}{1}$
		:					49		:			\downarrow
L		<u> </u>			Ц	_!	50		<u>:</u>			1
		:			Ц	<u> </u>	51		:			_
						1	52		<u> </u>			\downarrow
		:			Ц	ķ	53					1
		:			Ц	إ	54		:_			4
		:				ļ	55		<u>:</u>			1
						٤	56		_ :			1
		:				٤	57		<u> </u>			_
		:				_[:	58]	;			1
		:				٤	59		:			1
Ī		:				6	50		:			1

Document #: FORM DQP152-021-A, Revision #: NONE; EffectiveDate: 09/30/97

		···				· ,	
BF	CHARGE	NTERPLE	TATION.	•		\$. \$4.*	
94		TOTALIZER COUNTER	EHCH DIGI	r = 20	185.	7	
COKE							
COKF. 94	3:08 =	> 71	O RUN CI	YALGE	3.08 ma	tes records	
Sen TER	100		TOTHL IZISK COLNTFR	žnos i	01617 = 200	135.	- 1
	/ 1.5	-> 7	mā jo R	UN CHANG	TE 1:50	inder/seed	.
1. de 1. de 21. de 21. de 1. e i i i i i i i i i i i i i i i i i i i		\$ *- 1 # 180 180**					
				···			
,		7	,	1			
* s , - <u>-</u>			··· \$	• • • • • • • • • • • • • • • • • • • •		ا الله المستان المستان المستان المستان المستان المستان المستان المستان المستان المستان المستان المستان المستان	
						• • • •	
.,, . ,							
• • • •				• •			
<u>.</u> .					\$11.0 CE 80 BICARD BING BY 1		
				·		-	
		<u></u>	a aaraa ka aa			***	
				.			
	_ ;	المناسب شورون ها و مسلم رسان به استا تعاوید	·		F 15.1		
90 - 1 0 - 10 - 1 1 - 11 - 11 - 11 - 11 - 11 - 			, _ gg - v - s bibli in				
				··		**************************************	

• 14

٠

12-3-02 #7 BAGHOUSE STACK TEST - TRIBOFLW READINGS

		TEST #1		7.817 7	تر عــــ	TEST	#3" ·
	TIME	TRIBOTLON		. 72	ME TRIBOFLOW	TIMÃ	TRIBOFKA
	10:30	2,2		12:22		14:46	0.8
1		4,2	•	12:26	0.80	14:50	0.81
2- }	10:34	2.5		12:28	0.80	14:52	0.81
	10:36	1.5		12:30	0.80	14:54	0.82
4	10:38	0,8		12:32	0.80	14:56	0.81
5	10:40	0.8		12:34	0.80	14:58	0.81
6	10:42	0.88		12:36	0.81	15:00	0.82
7 8	10:44			12:40	0.82	15:04	0.84
9	10:48	0.84		12:42	0.81	15:06	0.84
	10:50	0.84		12:44	0.81	15:08	0.82
10	10:52	8.82		12:46	0.80	15:10	0.80
11	10:54	0.82		12:48	0.80	15:12	0.80
12	10:56	0.82		12:50	0.82	15:14 6	0.8/
/3	10:58	0.81		12:54	0.82	15:18	0.82
O Y	11:02	0.81	•	12:56	2.81	15:20	0.82
15	11:04	0.81		12:58	0.80	15:22	0.82
16	11:06	0.81		13:00	0.80	15:24	0.82
17	11:08	0.81		13:02	0.80	15:26	0.82
18	11:10	0.81		13:05	0.80	15:28	0.82
19	11:12	0,81			0.84	15:32	0.82
20	11:16	0.81		13188	0.86	15134	0.82
2/	11:18	0.81		135/6	0.86	15:36	0.82
22	11:20	0.81		13:12		15:78	0.81
23.	11:27	0.81		13:14	0.84	15:40	0.81
24	11:24				0.84	15:42	5.81
25	11: 26	0.80		13;18		15:48	0.82
26	11:30	0.80		13:22	0.82	15.16	0.82
27	11: 32	0.80	•	18:24	0.82	15:50	0.82
28	11: 3Y	0.80		13:26	0.81	/5',5 Z	0.84
29	11: 36	0.81		13:28	0.81		0.83
30	11:38	0.81		13:30	0.80	15:54	0.00

IN PROCESS 12-4-0.

LOT CONTROL CAR

DROSS FURNACE KETTLE#:	DATE: _	12-2	~02
/acuum zinc added? Yes No			
Amount of new zinc added for desilverizing	0	lbs	
Vas silver assay on pre-zinc sample high enough	h to make s	tubs? Yes	_ No. <u>X</u>
f yes, how many stubs did you make?			'
Vas de-zinc kettle temperature between 950 and	11100 F	Yes\N	0
Based on the tail sample, was this kettle successf	r"	١ .	
What product are you making?			
uring casting, estimate amount of lead scrapped			Tons
Vhat problems occurred while casting?	<u> </u>	<u> </u>	
		74	
Vork Order # Description		74	Completed
/ork Order # Description		74	Completed
ork Order # Description		The state of the s	Y N Y N
ork Order # Description			Y N Y N
			Y N Y N
			Y N Y N
			Y N Y N
Vork Order # Description TAMPING:		1)7	Y N Y N
		D7	Y N Y N

Document Name: Lot Control Card; Document Number: DQP156-009-A

Effective Date: 05/01/2000, Revision #5

LOT CONTROL CA LOT NUMBER

DROSS FURNACE KETTLE#: DATE: 12-2-02
Vacuum zinc added? Yes No
Amount of new zinc added for desliverizing lbs
Was silver assay on pre-zinc sample high enough to make stubs? Yes NoNo
If yes, how many stubs did you make?
Was de-zinc kettle temperature between 950 and 1100 F Yes No No
Based on the tail sample, was this kettle successfully dezinced? Yes \ No
What product are you making? DRT What pump? 19
During casting, estimate amount of lead scrapped due to any reason Tons
What problems occurred while casting?
•
··
·
Work Order # Description Completed Y N
Y N
Y N Y N
STAMPING:
D7/40 W

Document Name: Lot Control Card; Document Number: DQP156-009-A Effective Date: 05/01/2000, Revision #5

IN PROCESS 12-4-0 DAYSHIFT

LOT CONTROL CARD CASTED

LOT NUMBE		774	0
DROSS FURNACE KETTLE#:	DATE: _	12-2	-02
Vacuum zinc added? Yes No			
Amount of new zinc added for desilverizing		lbs	. 11
Was silver assay on pre-zinc sample high eno		stubs? Yes	No_ <u>//</u>
if yes, how many stubs did you make?		. 1	
Was de-zinc kettle temperature between 950	and 1100 F	Yes No)
Based on the tail sample, was this kettle succe			
What product are you making?	<u>, </u>	What pump?	17
During casting, estimate amount of lead scrap	ped due to an	y reason 	Tons
What problems occurred while casting?		 	·
<u> </u>		<u> </u>	
			•
			··
	·	·	···································
			·
Work Order # Description			Completed
		·	Y N Y N
		· · ·	Y N
TAMPING:			YN
		···	→ •
	TU	1/7	150
		21	1 W
		C	office of
	4		
· · · · · · · · · · · · · · · · · · ·		L	

Document Name: Lot Control Card; Document Number: DQP156-009-A

Effective Date: 05/01/2000, Revision #5

12-4-03
TRIBOFLOW READINGS
#9 BAGHOUSE

	RUN #1				RUN #2-	RUN 753		
							TRIBO READING	
	,	TIME	TRIBO READING	TIN		714E		
	(9:48	0.8	12:37	0.72	14:56	6.73	
	ک ع	5/52 	0.75	ાર <i>ંપા</i>	0.75	15100	6.75	
	3	9:54	0.76	12:43	0.77	15:02	8.74	
	4	9:56	0.76	12:45	0,88	15:04	0.72	
	5	9:5-8	0,77	12:47	0,78	15:06	٥.7٤	
	6	10:00	0.77	12:49	0,77	15:08	0,73	
	7	10:02	0.77	p: 51	0,77	15:10	6.72	
	8	10:06	6.77	r: 55	6, 75	15:14	0.74	
	9	10:08	0.80	12:57	0,80	15:16	0.75	
	10	10:10	0.82	12:59	0.82	15:18	0.75	
•	1//	10:12	0.78	13:01	0.82	15:20	0.75	
	12	10:14	0.78	13:103	0.75	15: 22	0.73	
	13	10: 16	0.77	13:05	0,72	15:24	0.735	
	14	10: 20	0.65	13:69	0.76	15:28	0.74	
	15	10: 22	0.6	137.17	0.75	15:30	0.76	
	16	10:24	0.66	13:13	0.75	15:32	0.76	
	17	10: 26	0.68	13:15	0,70	15:34	0.74	
	18	10: 28	0.72	13:17	0,70	15:36	0.73	
	19	16: 30	0.70	13 19	0. 75	15:38	0.74	
	20	10:34	0.73	13:23	0,70	15142	0.75	
	21	10:36	0.75	13:25	0.76	15:44	0.80	
	22	10:38	0.75	B : 27	0. 74	12:49	0.85	
	23	10:40	0.77	13:29	0.72	15:48	0,78	
	24	10:42	0.8	B 131	0, 73	15:50	0.78	
	25	10: 44	0.82	13:33	0.74	15:52	0.72	
	26	16: 48	0.82	13:37	0.75	15:56	0,74	
	27	10:50	0.77	13.13 7	0.80	15:58	0.78	
)	28	10:52	רְרָיִס	B 741	0.80	16:00	6,78	
	29		0.72	13 1 43	0,80	16:02	0.77	
	30		0.75	13 1 45	0,76	16:04	0.75	

N PRICESS 12-7-0

LOT CONTROL CARD,

REFINERY

LOT NUMBER

774/ AND CASTED

DROSS FURNACE KETTLE#:	DATE: 12-2-02
Vacuum zinc added? Yes No Amount of new zinc added for desilverizing	2056lbs
	enough to make stubs? Yes X No 10
If yes, how many stubs did you make?	
Was de-zinc kettle temperature between 9	Ministry of the first
	the state of the s
Based on the tail sample, was this kettle s What product are you making?	What pump?
During casting, estimate amount of lead s	crapped due to any reason Tons
What problems occurred while casting?	Maria de la companya
	THE STATE OF THE S
	ing and a second second second second second second second second second second second second second second se
	A STATE OF THE STA
a control of the cont	DANGER AND COLOR TO THE STATE OF THE STATE O
- <u>* * * * * * * * * * * * * * * * * * *</u>	Mining and American State (1997). Historian
Work Order # Description	Completed
Work Order is Description	Completed Y N
	YN
	YN
A CONTROL OF THE CONT	Y N
STAMPING:	
D7241 J.	Mas

Document Name: Lot Control Card; Document Number: DQP156-009-A Effective Date: 05/01/2000, Revision #5

IN PROCESS 12-4-02 DAISHIFT

LOT CONTROL CALLOT NUMBER 7

REFINERY

DAY SHIPT
AND OASTED

	SS FURNACE KETTLE#: DATE:	<u> </u>
Amou	nt of new zinc added for desilverizing	No
If yes,	how many stubs did you make?	<u></u>
Was d	e-zinc kettle temperature between 950 and 1100 F Yes X No	0
Based	on the tail sample, was this kettle successfully dezinced? Yes voroduct are you making? 1500A1 (00) What pump?	_ No ?
During	casting, estimate amount of lead scrapped due to any reason.	Tons
What p	problems occurred while casting?	<u> </u>
	•	
Work (Order # Description	Completed
Work (Order # Description	Completed Y N Y N Y N Y N Y N
	Order # Description IPING:	YN

Document Name: Lot Control Card; Document Number: DQP156-009-A

Effective Date: 05/01/2000, Revision #5

BLAST FURNACE FEED DATA SHEET DATE: 12-5-02

BF# NAME: 12-5-02

	CHARGE	E CHARGE TIME		Γ	CHARGE		CHARGE	CHARGE TIME		<u> </u>	
СО	START	COKE	SINTER	N	s	ŕ	СО	START	COKE	SINTER	NS
239	5.09	105	100 352.	Y	П	31	30	:	3325	320055	X
(2)	5:18	210	322 351				233	:	3478		X
23%	5:47	315	200 259	1			233	;	3581	3400 136	X
100	5.55	420	400 352	12.		34	2 20) :	3683	3500 140.	X
228	6:42	525	500 232	}	П	35		:			
3/10	649	1830	1000 338	П	X.	36		_ :			
3.5	7:57	133	700 051	1. S. 1. 1.		37		:			
133	8:00	8310	90 gri			38		:			
1/7	- 4:D7	939	900 243		3	39		:			
137	8 21	1043		X	4	40		:			
15	:	116	110000		4	\$1		:			
157	5 250	1248	1200310		1	42		_:			
214	A. Jan	133	1300 312		4	43		<u> </u>			
	•	1454	1400 248			: 4		:			
232	9:46	1557	1500 331	M	_	\$5		:			
183	10:09	1660	1600 453		1/4	16		:			
348	10:41	1933		X		\$7		:			
242	10:49	2034	1900 143)	<u> </u>	:8		<u> </u>			
୍ଟ୍ର	11 3 20 11			X	4	19		_ :			
278	11:27		2100-134	_	<u> </u>	30		<u> : </u>			
312	11:51	2745	177 1	Ŋ	5	51	}				\perp
341	12:10	2448	2300 123	_[1	<u> </u>	2		_:_			1:
318	12:25			<u> </u>	5	3		:			+
521	10.10			4	5	4		:			
228	12:56		2600 126	-1	<u>{</u> 5	5		:			1
3/8	1:15	2860	2700 123	_	+	6		_:			+
250	1:70	2962	1800-121		15	7		_ :			+
	<u> </u>	3066		<u>\</u>		8		<u> </u>			+
<u> </u>	;	3109	3000 117	4	<u> 5</u>	9		:			+
270	2:25	3972	3/00 118	XL.	6	0		:			上

Document #: FORM DQP152-021-A, Revision #: NONE; EffectiveDate: 09/30/97

BLAST FURNACE FEED DATA SHEET DATE: 12-5-02

4

SHIFT: Da 1/ NAME: J Hams #g CHARGE 20 /clet CHARGE TIME = 10 Toll CHARGE **CHARGE TIME** NS COKE SINTER NS **START** CO SINTER ÇO START COKE MO 210 **37** 20 31 18/ 210 200 305 N32 : . . 300 225 **X**33 376 400 DOY 34 : 5:28 470 500 35 25/ ; 600 5:36 564 314 3/11 36 : 700 <u>6:05|658</u> 150 1114 37 6:14 752 800 746 38 127 6:27 844 900 X 39 158 119 541:a 10:34 940 1000 757 110 40 Z:00/034 1100 54.7 41 160 1200 7:07 1/28 42 1/2/1 1300 7:3/1822 20% 43 11.60 44 45 46 47 48 49 50 51 52 53 54 55 : 56 : 57 : : 58 : ' 59

Document #: FORM DQP152-021-A, Revision #: NONE; EffectiveDate: 09/30/97

60

COKE 94	CHARGE INTERPRETATION. TOTALIZER
	TOTALIZER TOTALIZER TOTALIZER TOTALIZER THE TO RUN CHARGE 3.08 MALTES SCENDS
SOUTER	TOTAL IZITA FORM TERM DIGIT = 200 161.
	150 > TIME TO RUN CHANGE 1:50 mindes/secus
	in the second of
	· · · · · · · · · · · · · · · · · · ·
	e de la companya del companya de la companya de la companya del companya de la co

The second secon

. -

THE RESERVE OF THE PARTY OF THE

400 100 200 200

İ

12-5-2002 A8 RAGHOWE STACK THIT

7557 1			TRIBOFAN K	CTADINGS	7E153		
	TIPLE	THIA DELON	FINE	TRIBOFLAN	71.40		
•	1 10:15	8.6	11:50	7.8	13:50	8.6	
	2 10:20	10.0	11:55	3.6	13:55	5.5	
	3 10:22	13,0	11:57	3.0	13:57	4,2	
	4 10:25	16.4	12:00	3.8	14:00.	3. 8	
	5 10: 27	14,2	12:02	4.2	14:02	3,2	
	6 10: 30	12.0	12:05	8.2	14:05	2,5	
	7 10:31	10.5	12:07	. 10.8	14:07	1.8	
	8 10:35	7.9	12:10	10.5	14:10	1.5	
	9 10:37	6.0	12:12	7.6	14:12	1.8	
	10 10:40	9.Z	12:15	5,2	14:15	1.4	
	11 10:42	7.5	12:17	6.3	14:17	1.4	
	12 18:45	14,2	/2:20	7.6	19:20	1.5	
	13 10147	13.4	/2:2/	8.5	19:23	1.5	
	14 10:52	9.0	12:26	9.2	14:26 -	1.5	
	15 10:55	6.5	12:28	10.0	14:28	1.5	
	16 10:57	7.0	12:31	7.5	14:31	1.5	
	17 1:00	9.5	12:33	6.2	14:33	1.6	
	18 11:03	11.3	12:38	6.0	14:36	1.6	
	19 11:05	12.0	12:38	6.0	14:38	1.6	
	20 11:07	12.3	12:48	8.0	14:41	1.5	
	21 1:10	10.4	12:43	9,5	14:43	1,5	
	22 ///2	8.0	12:48 ;	10,0	14:46	1.5	
	23 11:15	6.5	12:48	9,2	14:48	1.6	
	24 11:17	. 7.2	12:51	8.5	14:51	1.6	
	25	- '					
	26						

26

27

28

· 29

30